
Professional
SQL Server® 2008 Administration with

Windows PowerShell™

Muthusamy Anantha Kumar
Yan Pan

Wiley Publishing, Inc.

Professional SQL Server® 2008 Administration with
Windows PowerShell™
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-47728-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Kumar, Muthusamy Anantha, 1974-
Microsoft SQL server 2008 administration with Windows Powershell / Muthusamy Anantha Kumar, Yan Pan.

p. cm.
Includes index.
ISBN 978-0-470-47728-1 (paper/website)

1. SQL server. 2. Windows PowerShell (Computer program language) I. Pan, Yan, 1976- II. Title.
QA76.73.W56K96 2009
005.2’82--dc22

2009013304

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought.
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Web site is referred to in this work as a citation and/or a potential source of further information does not mean that
the author or the publisher endorses the information the organization or Web site may provide or recommendations
it may make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States
and other countries, and may not be used without written permission. SQL Server and Windows PowerShell are
trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any
product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Contents

Introduction xxi

Chapter 1: What Is Windows PowerShell? 1

Command-Line Interfaces versus Graphical User Interfaces 1
Prerequisites for Installing Windows PowerShell 2.0 2

Installing the Microsoft .NET Framework 6
Installing Windows Remote Management 6

Installing Windows PowerShell 7
LaunchingWindows PowerShell 10

Using the Command console 11
Using All Programs 11
Using Start Run 11

Summary 13

Chapter 2: Windows PowerShell Command Types, Snap-ins, and cmdlets 15

PowerShell Command Types 16
Native Commands 16
PowerShell cmdlets 18
Shell Function Commands 19
Script Commands 20
Calling PowerShell cmdlets or Scripts from the Command Shell 22

PowerShell Snap-ins 23
Core 24
Host 25
PowerShell.Management 25
Security 26
Utility 27
Diagnostics 27
WsMan.Management 28

PowerShell cmdlet Syntax 28
Named Parameter 28
Positional Parameter 29
Command Chaining 30

Contents

Getting Help 31
Filtering 34

Sorting 38
Formatting 39
Summary 42

Chapter 3: Windows PowerShell Programming, Scripting,
Error Handling, and Debugging 43

PowerShell Scripts 44
PowerShell Variables 44
Arrays 48
Expressions 49

Operators 50
Conditional Expressions 52

IF Statement 53
Loop Construct 54

For Loop 55
While Loop 55
Do-While Loop 56
Do-Until Loop 56
Foreach Statement 57

Input 58
PowerShell Scripting 59
Text File As Input 62
Output 64

Writing to the Console 64
Writing to a File 65

Error Handling 67
Debugging 71
Summary 75

Chapter 4: Windows PowerShell Functions, Parameters, Sourcing,
Scopes, and User Profile 77

Functions 77
Arguments in Functions 78
Returning Values 80

Script Parameters 81
Sourcing 84
Variable Scope 85

xiv

Contents

Function Scope 87
User Profile 88

Transcripts 90
Summary 91

Chapter 5: Working with the File System, Registry, and Variables 93

Using Get-PSDrive and Get-PSProvider 93
Working with File System 95

Navigating the File System 96
Managing Files and Directories 98
Managing File Contents 106

Working with the Registry 108
Working with Variables 111

Automatic Variables 113
Preference Variables 115
User-Created Variables 116

Working with Environment Variables 121
Summary 122

Chapter 6: Working with Event Logs 123

Event Log Service 124
Event Viewer 125
Event Logs 125
Log Entry Types 128
Exporting the event logs 134

PowerShell cmdlets Related to event log 136
Summary 140

Chapter 7: Working with Windows Services and Processes 141

What Is a Windows Service? 141
Windows PowerShell andWindows Services 143

Get-Service 144
Stop-Service 146
Start-Service 148
Set-Service 150

Working with Windows Processes 151
Get-Process 153
Stop-Process 155
Summary 157

xv

Contents

Chapter 8: Working with WMI 159

Permission Issues andWMI 159
The WMI Model 161
Working with Event Log 164
Working with Services 170
Working with Processes 179
Working with Environment Variables 186
Working with the Registry 190
Summary 195

Chapter 9: WMI Provider for Configuratio Management 197

Managing SQL Server Services 198
Managing Client Network Protocols 203
Managing SQL Server Client Aliases 207
Managing Server Network Protocols 211
Changing FILESTREAM Settings 214
Changing SQL Server Advanced Properties 216
Summary 218

Chapter 10: WMI Provider for Server Events 219

WMI Provider for Server Events 219
WMI Query Language (WQL) 220
Event Handling with Windows PowerShell 2.0 221
Monitoring Errors from the SQL Server Error Log 225
Monitoring Deadlocks 226
Monitoring Blockings 229
Monitoring Login Changes and Failed Login Attempts 233
Monitoring Databases 235
Monitoring Database Objects 236
Summary 239

Chapter 11: Windows PowerShell in SQL Server 2008 Environment,
SQL Server PowerShell Provider 241

sqlps Utility 241
SQLSERVER: Drive and Invoke-Sqlcmd cmdlet 245
SQL Snap-ins 245
Encoding and Decoding Uniform Resource Name (URN) 256
Summary 258

xvi

Contents

Chapter 12: Managing Policies through SQLSERVER:\ SQLPolicy 259

SQLSERVER:\SQLPolicy Folder 259
Conditions 263
Policies 268
Summary 281

Chapter 13: Windows PowerShell and SMO 283

PowerShell and the SQLConnection .NET Class 283
Working with SQL Server using SMO 290

Methods and Properties 291
Getting Version Information 291
SQL Server SPID Information 292
SQL Server Server-Related Information 293
SQL Server Database-Related Information 295
Changing the Login Mode 296
Host Information 296
Performance Counters 297

Working with Databases using SMO 297
Working with Tables using SMO 304

Creating Tables 305
Listing Columns 305
Removing Columns 306
Adding Columns 307
Dropping a Table 308

Backup and Restore with SMO 308
Database Backup 308
Transaction Log Backup 311
Differential Backup 312
Restoring Full Backup 313
Restoring a Full Backup and Transaction Log Backup 313

Summary 316

Chapter 14: Building SQL Server Standards and PowerShell
Coding Standards 317

SQL Server Standards 318
SQL Server Development Standards 318

Naming Conventions 318
General Rules 320

Stored Procedure Standards 321
Keep Them Small 321
‘‘DBO’’ As Object Owner 321

xvii

Contents

Use Comments Generously 321
Select * 322
Cursors 322
Temporary Tables 322
Things to Avoid 322
Things to Use 323
Check @@ERROR 323
Use SQL Server Date Data Types 323
DML Statements 323
ANSI-Standard Join Clauses 323
Deprecated Features 324

Database Design Standard and Best Practices 324
User-Define Tables 324
Logs 324
Split tempdb 325
Databases 325
Security and Roles 325
Auto Create and Auto Update 325
Size 325
Auto Shrink and Auto Close 325
Design and Performance 326
Store Unstructured Data 326
More Performance Guidelines 326

Data Protection Standards and Best Practices 327
Backup Policy 327

SQL Server Production Standards 327
High Availability and Disaster Recovery 327
The Administration Database 328
The Scratch Database 328
Centralized Inventory Server 328
Database File Location and RAID 328
Segregation 328
Features 328

PowerShell Coding Standard 329
Default Parameters 329
Log File 329
Log Format 329
Comments 330
Display 330
Variable Naming Convention 330
Exception Handling 330

Summary 331

xviii

Contents

Chapter 15: Building SQL Server Inventory 333

SQL Server Inventory 333
Hosts 335
Clusters 346
ClusterNodes 350
Servers 355
Databases 368
Supplementary Tables 373
Summary 376

Chapter 16: SQL Server Installation 377

Installation Procedure and Template 377
SQL Server Installation Template 381

Standalone Installation Example 389
Cluster Installation Example 395
Summary 399

Chapter 17: Collecting SQL Server Performance and Host
Performance Data 401

SQL Server Performance Data Collection 401
SQL Server Host Performance Data Collection 408
Summary 417

Chapter 18: Monitoring SQL Server 419

Pinging SQL Server Hosts 420
Checking SQL Server–related Services on SQL Server Hosts 423
Checking Uptime of SQL Server Hosts 427
Monitoring Windows Event Logs 429
Monitoring SQL Server Error Log 433
Monitoring Blockings 439
Monitoring Deadlocks 444
Summary 449

Chapter 19: Monitoring Disk Space Usage, Database Files, and Backups 451

Monitoring Disk Space Usage 451
Monitoring Database Files 461
Monitoring Backups 468
Summary 473

xix

Contents

Chapter 20: Definin Policies 475

Stored Procedure Naming Convention Policy 475
Auto_Close and Auto_Shrink Off Policy 480
Summary 485

Chapter 21: Generating Database Scripts 487

Scripting Databases 487
Scripting Schemas 489
Scripting User-Define Data Types 491
Scripting Tables 494
Scripting User Views 496
Scripting Stored Procedures 498

Scripting Functions 500
Scripting XML Schemas 502
Scripting Users 503
Summary 506

Appendix A: cmdlets 507

cmdlets Related to Core Snap-ins 507
cmdlets Related to the PowerShell Management Snap-in 512
cmdlets Related to the Security Snap-in 519
cmdlets Related to the Utility Snap-in 520

Index 531

xx

I n t roduc t i on

Welcome to SQL Server 2008 Administration with Windows PowerShell. This book is a nuts-and-bolts guide
to creating Windows PowerShell scripts that can be used to administer every aspect of the SQL Server
2008 Database Engine. Using a very hands-on approach, this book guides you through the basics of
Windows PowerShell, the available Windows PowerShell components that have been integrated into
SQL Server 2008, and the actual administration tasks. By providing clear, well-structured examples, SQL
Server 2008 Administration with Windows PowerShell shows you how to construct effective and practical
solutions that can improve SQL Server administration and monitoring at your company.

SQL Server 2008 delivers a dynamic, smart, and productive data platform for all your data-related
needs. SQL Server 2008 offers secure, reliable, and consistent performance. It is also very scalable and
flexible, handling any form of data. It is well known in the technology world that SQL Server 2008 is not
only a RDBMS, but also has built-in features such as Integration Services for ETL, Analysis Services for
Business Intelligence, Reporting Services for report management, and more. This is why Microsoft SQL
Server is a cut above all other database products.

Windows PowerShell 2.0 is the new extensible command-line interface shell and scripting language that
provides an environment for interactive scripting and non-interactive scripted administration of local
and remote computers. Because Windows PowerShell integrates with the Microsoft .NET Framework,
we can take advantage of all the features of .NET as well. Windows PowerShell 2.0 helps system admin-
istrators to automate and manage various aspects of the Windows environment. PowerShell 2.0 also has
many new and useful features such as remoting, eventing, and many more. For these reasons, Windows
PowerShell 2.0 stands above all the system administration products on the market.

This book brings together the best of both worlds — namely, the database world and the administra-
tion world — to help you manage, automate, and control your environment. This book combines three
technologies — SQL Server 2008, the .NET Framework, and Windows PowerShell 2.0 — and guides SQL
Server database administrators in managing a server plant using Windows PowerShell 2.0.

We’ve provided a wide range of material in a tutorial-based book to get you over the learning curve of
Windows PowerShell 2.0 and SQL Server 2008 database administration.

Who This Book Is For
Whether you are a SQL Server database administrator, a developer, or a systems administrator, at some
point you probably have had to develop or administer the system or the database in your organization.
It is also common for the people in these roles to wear each other’s hats in order to get things done.

If you are a Microsoft SQL Server database administrator, you know that you cannot manage and access
all the system resources from SQL Server. Because SQL Server runs on top of the Windows operating
system and relies on the health of the system, you need information from the system side as well. This
book will teach you to manage both SQL Server and system resources using Windows PowerShell 2.0.

Introduction

If you are a systems administrator and would like to know more about SQL Server database adminis-
tration, this book introduces you to the features in SQL Server 2008 and provides plenty of examples
demonstrating how to manage SQL Server 2008 using Windows PowerShell 2.0.

This book is also appropriate for those who have some exposure to systems administration and SQL
Server administration, or for those who want to expand their skill set to include administration.

What This Book Covers
This book covers the fundamentals of Windows PowerShell 2.0 cmdlets. It includes programming, script-
ing, debugging, and error handling in PowerShell. It covers all Windows administration related to SQL
Server 2008 using Windows PowerShell 2.0.

It also introduces Windows Management Instrumentation (WMI) and explains how to write WMI scripts
in Windows PowerShell to perform system and SQL Server 2008 administrative tasks.

This book also covers the WMI providers for SQL Server. These useful providers enable you to manage
SQL Server services and network connectivity, and proactively monitor SQL Server events. You will also
discover the new Eventing feature in Windows PowerShell 2.0.

Additionally, the new SQL Server 2008 support for Windows PowerShell is presented. It illustrates the
SQL Server PowerShell provider and SQLSERVER: drive. You will also learn how to manage SQL Server
objects, including the new policy objects.

One more important topic this book covers is using SQL Server Management Objects (SMO) to create
databases and tables and perform backups and restores. The SMO scripts shown in this book are all
written in Windows PowerShell 2.0.

This book also explains the need for SQL Server standards; and you will learn how to build a SQL Server
inventory over an existing or new environment.

Finally, you will learn how to perform the various SQL Server administrative tasks on servers in the
inventory, such as installation, monitoring, performance data collection, policy definition, backups,
restores, database scripting, and more, using Windows PowerShell 2.0.

How This Book Is Structured
Windows PowerShell 2.0 is introduced in the first eight chapters. If you do not have any background
in Windows PowerShell 2.0, these chapters are critical. They help you understand the basics of writing
Windows PowerShell 2.0 scripts, and you will learn how to use the scripts to administer the overall
operating system.

Chapter 1 covers installation of prerequisites, and installation and configuration of Windows
PowerShell 2.0.

Chapters 2, 3, and 4 cover the various cmdlets available in Windows PowerShell, and the various pro-
gramming features such as inputs, outputs, debugging, error handling, functions, profiles, and so on.

xxii

Introduction

Chapters 5, 6, 7, and 8 cover the various systems administration features, including accessing file systems,
registry information, variables, and Event logs. It also explains the Windows Management Instrumenta-
tion (WMI) model and shows you how to use WMI to manage system resources.

Chapters 9 and 10 show you how to access the WMI providers for SQL Server. You will learn how to use
the WMI Provider for Configuration Management to manage SQL Server services and network connec-
tivity, and the WMI Provider for Server Events to manage SQL Server events. You will also discover the
new Eventing feature in Windows PowerShell 2.0.

Chapters 11 and 12 take on the Windows PowerShell support that has been integrated into SQL Server
2008, namely, the SQLSERVER: drive. These two chapters will focus on the SQL and SQLPolicy folders
separately.

Chapter 13 shows you how to write SQL Server Management Objects (SMO) programs in Windows
PowerShell 2.0. This chapter covers various tasks such as creating a database and database objects, and
backing up and restoring a database.

Chapters 14 and 15 provide you with ample examples of building a SQL Server tasks inventory over an
existing or new environment, and how to define various standards. Standards include both SQL Server
standards and Windows PowerShell standards.

The remaining chapters explain installation, data collection, monitoring, and how to create Windows
PowerShell scripts to handle a wide range of SQL Server administrative tasks for servers in the inventory.

Chapter 16 illustrates the installation of SQL Server 2008. Chapter 17 covers tasks related to collecting
SQL Server host and server performance data. Chapters 18 and 19 cover monitoring aspects of SQL
Server 2008 administration. Chapter 20 defines policies to enforce SQL Server standards, and Chapter 21
generates various scripts at both the database level and the database object level.

What You Need to Use This Book
This book covers SQL Server 2008 administration with Windows PowerShell 2.0. In order to use this
book, you need both a server-side component and client-side components:

❑ For the server-side component, you need SQL Server 2008 Developer or Enterprise or Standard
edition.

❑ For client-side components, you need Windows PowerShell 2.0 CTP3. To install Windows
PowerShell 2.0 CTP3, the operating system of your computer needs to be either Windows XP
Service Pack 3, Windows 2003 Service Pack 2, Windows Vista Service Pack 1, or Windows Server
2008. You also need to pre-install the following components on your computer:

❑ Microsoft .NET Framework 2.0 or greater

❑ Windows Remote Management 2.0 CTP3 for Windows PowerShell remoting and back-
ground jobs

We discuss the prerequisites of Windows PowerShell 2.0 in Chapter 1 in detail.

xxiii

Introduction

All the scripts and codes in the book have been tested on SQL Server 2008 with .NET Framework 3.5
and Windows PowerShell 2.0 CTP3. We tested all the scripts on Windows XP, Windows Server 2008,
and Windows Vista. Most of the scripts and code illustrated here work under Windows PowerShell
1.0 as well, although you may notice that the output of such scripts and codes differs slightly, and that
remoting under Windows PowerShell 1.0 is not possible unless you use WMI objects.

In order to install Windows PowerShell 2.0 and Windows Remote Management, and to store all the
scripts provided in the book, you need a minimum of 100MB of hard disk space.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight new terms and important words when we introduce them.

❑ We show filenames, URLs, and code within the text like so: persistence.properties.

❑ We present code like this:

We use a monofont type with no highlighting for most code examples.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search
box or by using one of the title lists) and click the Download Code link on the book’s detail page to obtain
all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-47728-1.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or a
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save

xxiv

Introduction

another reader hours of frustration, and at the same time you will be helping us provide even higher
quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view all
errata submitted for this book and posted by Wrox editors. A complete book list, including links to each
book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot ‘‘your’’ error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you have found. We’ll check the information and,
if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions of the
book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Enter the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxv

What Is Windows
PowerShell?

Windows PowerShell is the extensible command-line interface shell and scripting language that
provides a command-line environment for interactive exploration and administration of computers.
In addition, it provides developers with an opportunity to script these commands, enabling them
to be automated, scheduled, and run multiple times.

This chapter covers the following topics:

❑ A brief overview of command-line interfaces

❑ Prerequisites for installing PowerShell

❑ Installing PowerShell 2.0 CTP3.

Command-Line Interfaces versus Graphical
User Interfaces

Before UNIX, Linux, and Windows surfaced in the information technology market, input media
such as punched card and punched tape were used. All the input and instructions to the computer
used command lines.

When UNIX and Linux were released, administrators started managing the operating system using
command-line interfaces, which were also used by the day-to-day users and programmers to inter-
act with the operating system.

UNIX and Linux are built on command-line interfaces, so there has always been administrative
scripting and different shells, such as the Korn shell, the C shell, and the Bourne shell. Programming
languages such as TCL and PERL were immediately available.

Chapter 1: What Is Windows PowerShell?

Originally, when Microsoft released MS-DOS, it was not used as a shell. It was entirely a standalone
operating system. The initial and original Microsoft Windows release was a graphical shell that sat on
top of the MS-DOS operating system. Once Windows NT was introduced, this situation was reversed.
MS-DOS became the shell in the graphical Windows operating system.

Graphical user interfaces (GUIs) were basically developed for users with less technical background who
were looking for a friendly interface. Because graphical interfaces are limited to fewer functions, once
you hit their limitations you will start relying on the command-line interface. For example, with a GUI,
if you want to rename all the extensions of a group of files and suffix each file with the current day’s
timestamp, it will take a while because you have to select and rename each file individually.

Therefore, command-line interfaces and their commands are very commonly used for administrative
tasks and automation. They also help to consolidate functionality in batches, through MS-DOS batch
files.

command.com was used as the command-line user interface in early versions of Microsoft Windows.
cmd.exe was introduced in Windows NT.

When administrators reached the limit of command-line batch files, they started looking for a language
that could do both command shell functions and programming. Microsoft introduced the Visual Basic
scripting language, which helped administrators initially. However, there were limitations in VBScript as
well. Administrators started relying on Windows Management Instrumentation (WMI) and COM objects
introduced later by Microsoft for many other administrative functions.

The administrative command-line interface started becoming more complicated with internal DOS com-
mands, external DOS commands, batch files, executables, VBScripts, WMI, and so forth.

It was with all of this in mind that Microsoft developed and introduced Windows PowerShell.

Prerequisites for Installing Windows
PowerShell 2.0

Windows PowerShell can be installed and run on Windows XP, Windows Vista, Windows Server 2003,
and Windows Server 2008. Although Windows PowerShell is included as part of Windows Server 2008,
it is not installed by default on Windows XP, Windows 2003, or Windows Vista. At the time of writing,
Windows PowerShell 1.0 is visible as a feature in Windows Server 2008 that can be turned on.

Windows PowerShell 1.0 is also installed with Exchange Server 2007, System Center Operations Manager
2007, System Center Data Protection Manager V2, and System Center Virtual Machine Manager because
they leverage Windows PowerShell to improve administrator control, efficiency, and productivity.

This book uses Windows PowerShell 2.0 CTP3. Before installing Windows PowerShell 2.0 CTP3, you
should ensure that your system has the following software programs it requires:

❑ Windows XP Service Pack 3, Windows 2003 Service Pack 2, Windows Vista Service Pack 1, or
Windows Server 2008

❑ Microsoft .NET Framework 2.0 or greater

2

Chapter 1: What Is Windows PowerShell?

❑ Windows Remote Management 2.0 CTP3 for Windows PowerShell remoting and background
jobs

❑ Microsoft .NET Framework 3.5 Service Pack 1 for Windows PowerShell Integrated Scripting
Environment (ISE) and the Out-GridView cmdlet

If .NET Framework 2.0 is not installed on your computer, the error message shown in Figure 1-1 will pop
up when you try to install Windows PowerShell 2.0 CTP3.

Figure 1-1

After installing the .NET Framework, if you continue to install on a non-standard operating system such
as Windows Server 2000, Windows NT, and so on, you may get the error shown in Figure 1-2.

Figure 1-2

Although Figure 1-2 shows v1.0 in the title bar and file path, it is actually PowerShell 2.0 CTP3. Com-
munity Technology Preview, also known as CTP3, is basically the bug fix that Microsoft relies on, adding
new features based on feedback from the technology community. The folder may be changed to v2.0 once
the release to manufacturing (RTM) version is released.

In order to check the prerequisites for the PowerShell installation, we created a batch file to run all the
necessary checks. Listing 1-1 shows the MS-DOS batch script, CheckPowershellPreqs.bat, which uses
Windows Management Instrumentation Command-line (WMIC) to check the requirements before you
install Windows PowerShell. WMIC enables you to access WMI information via the command line. In
some respects, you can think of WMIC as an early prototype of PowerShell. However, WMIC can only
output its results as text. It doesn’t return programming objects that can be further processed, as Window
PowerShell does, and as you will see later.

Listing 1-1: CheckPowershellPreqs.bat

@ECHO Off

REM ***
REM *Objective: TO check if the current windows version is *
REM * Compatible for PowerShell 2.0 and its pre-requisites*
REM *Created by: Yan and MAK *
REM *Created Date: 2008/09/01 *

Continued

3

Chapter 1: What Is Windows PowerShell?

Listing 1-1: CheckPowershellPreqs.bat (continued)

REM * *
REM ***

SET OS_VERSION=
SET Service_Pack=

REM Find OS version
FOR /F "delims== tokens=2" %%i IN (’wmic os get Version /value’)

DO SET OS_VERSION=%%i

IF NOT DEFINED OS_VERSION (
ECHO WMIC is not installed on this system.
GOTO :END_SCRIPT

)

REM Find service pack value
FOR /F "delims== tokens=2" %%i IN (’wmic os get ServicePackMajorVersion /value’)

DO SET Service_Pack=%%i

REM Windows XP
IF "%OS_VERSION%"=="5.1.2600" (

@IF "%Service_Pack%" LSS "3" (
ECHO %OS_NAME% Service Pack 3 is required
GOTO :END_SCRIPT

)
GOTO :DOTNETFRAMEWORK_CHECK

)

REM Windows Server 2003
IF "%OS_VERSION%"=="5.2.3790" (

@IF "%Service_Pack%" LSS "2" (
ECHO %OS_NAME% Service Pack 2 is required
GOTO :END_SCRIPT

)
GOTO :DOTNETFRAMEWORK_CHECK

)

REM Windows Vista
IF "%OS_VERSION%"=="6.0.6001" (

@IF "%Service_Pack%" LSS "1" (
ECHO %OS_NAME% Service Pack 1 is required
GOTO :END_SCRIPT

)
GOTO :DOTNETFRAMEWORK_CHECK

)

IF "%OS_VERSION%" GTR "5.2.3790" (
GOTO :DOTNETFRAMEWORK_CHECK

)
ELSE (

GOTO :END_SCRIPT
)

4

Chapter 1: What Is Windows PowerShell?

Listing 1-1: CheckPowershellPreqs.bat (continued)

REM Check .NET framework
:DOTNETFRAMEWORK_CHECK
wmic product where (caption like "Microsoft .NET Framework%%") get Version /value |

findstr "=[2-9]\.*" > nul
IF "%ERRORLEVEL%"=="1" (

ECHO .NET Framework 2.0 or greater is required
GOTO :END_SCRIPT

)

REM Check Windows remote management
:WINRMCHECK
wmic path Win32_service where caption="Windows Remote Management (WS-Management)" |

findstr /i "(WS-Management)" > nul
IF "%ERRORLEVEL%"==1 (

ECHO Windows Remote Management is required
GOTO :END_SCRIPT

)

ECHO Your system meets the requirements

:END_SCRIPT

From a Windows command console, run CheckPowershellPreqs.bat from the script directory
C:\DBAScripts. You should get a message similar to the one shown in Figure 1-3 if your system meets
the requirements for a PowerShell installation.

Figure 1-3

You may run into an error as follows on Windows Server 2003:

ERROR:
Code = 0x80041010
Description = Invalid class
Facility = WMI

This means that you need to install the WMI Windows Installer Provider in order for WMIC to work.
To do so, open Control Panel � Add/Remove Programs. Select Add/Remove Windows Components.
Double-click Management and Monitoring Tools. Select WMI Windows Installer Provider, and then click
OK to install.

If your operating system is Windows XP Service Pack 2 and you install Windows PowerShell 2.0 CTP3, it
may or may not work. The officially supported service pack for Windows XP when installing Windows

5

Chapter 1: What Is Windows PowerShell?

PowerShell 2.0 CPT3 is Service Pack 3, so when executing C:\DBAScripts\CheckPowershellPreqs.bat
it will complain that Service Pack 3 is required.

Installing the Microsoft .NET Framework
Windows PowerShell integrates with the .NET Framework and provides a shell environment to per-
form administrative tasks. PowerShell exposes the .NET classes as built-in commands, and when these
commands are executed they produce one or more structured objects as output.

Download the .NET Framework from http://download.microsoft.com and install .NET Framework 2
or later. It is recommended that you use .NET 3.5, although all the code in this book works on .NET
Framework 2 and later. In Chapter 11, you will see that an SQL Server 2008 installation installs .NET 3.5
by default.

Installing Windows Remote Management
Another prerequisite is to install Windows Remote Management (WinRM). WinRM is required for Win-
dows PowerShell remoting and background jobs. You can download WinRM 2.0 CTP3 (also known as
Ws-Management) from https://connect.microsoft.com/WSMAN/Downloads for Windows Vista and
Windows Server 2008. The installation procedures of the executable Windows6.0-KB950099-x86.msu for
32-bit and Windows6.0-KB950099-x64.msu for 64-bit are shown in Figure 1-4 and Figure 1-5.

Figure 1-4

Figure 1-5

6

Chapter 1: What Is Windows PowerShell?

Double-click on Windows6.0-KB950099-x86.msu if you are installing WinRM on a 32-bit Windows oper-
ating system. Double-click on Windows6.0-KB950099-x64.msu if you are installing it on a 64-bit Windows
operating system.

If you already have Windows PowerShell 1.0 installed on your machine, then you have to uninstall
PowerShell 1.0 first and then install PowerShell 2.0 CTP3.

To uninstall Windows PowerShell 1.0, follow these steps:

1. Click Start ➪ Run, type appwiz.cpl, and then click OK.

2. Select the Show Updates check box (on the top in the middle).

3. In the list of currently installed programs, click Windows PowerShell(TM) 1.0, and then click
Remove. If you don’t see Windows PowerShell(TM) 1.0, please look for Windows Hotfix
926139, 926140, or 926141.

4. Follow the instructions to remove Windows PowerShell(TM) 1.0.

If you already have Windows PowerShell 2.0 CTP1 or CTP2, you have to uninstall them also. They
appear as ‘‘Windows PowerShell V2 (TM)’’ in the program list.

In Windows 2008, Windows PowerShell 1.0 is made visible as a Windows feature. You can disable and
uninstall the PowerShell feature as described here:

1. Click Start at the Windows taskbar.

2. Click Server Manager � Features � Add Feature, and uncheck the Windows PowerShell
check box.

3. Click Next to uninstall.

Now that you have the acceptable operating system, the .NET Framework, and Windows Remote Man-
agement, the next section provides the steps needed to actually install Windows PowerShell 2.0 CTP3.

Installing Windows PowerShell
To install Windows PowerShell on Windows XP or Windows 2003 systems, do the following:

1. Download the Windows PowerShell 2.0 CTP3 installation file from www.Microsoft.com/
downloads. The name of the installation file varies according to platform, operating system,
and language pack. Choose the appropriate version for your operating system. If you have a
64-bit Windows operating system, then please download PowerShell_Setup_amd64.msi, as
shown in Figure 1-6. If you have a 32-bit Windows operating system, then please download
PowerShell_Setup_x86.msi, as shown in Figure 1-7.

2. After downloading the appropriate version for your operating system, you will see the ini-
tial screen of the installation wizard, similar to the one shown in Figure 1-8. Click Next.

3. Accept the license agreement, as shown in Figure 1-9, and click Next.

7

Chapter 1: What Is Windows PowerShell?

Figure 1-6

Figure 1-7

Figure 1-8

8

Chapter 1: What Is Windows PowerShell?

Figure 1-9

4. It takes a few minutes to complete the install. As shown in Figure 1-10, click Install to begin
the installation process. You will see the progress of the installation, as shown in Figure 1-11.

Figure 1-10

5. When installation is completed successfully, you will see a screen similar to the one shown
in Figure 1-12. Click Finish.

On 32-bit versions of Windows, Windows PowerShell is installed by default in the %SystemRoot%
\System32\WindowsPowerShell\v1.0 directory.

On 64-bit versions of Windows, a 32-bit version of Windows PowerShell is installed in the
%SystemRoot%\SystemWow64\WindowsPowerShell\v1.0 directory and a 64-bit version of Windows
PowerShell is installed in the %SystemRoot%\System32\WindowsPowerShell\v1.0 directory.

9

Chapter 1: What Is Windows PowerShell?

Figure 1-11

Figure 1-12

This book covers Windows PowerShell 2.0 CTP3. The installation file replaces the executables in the v1.0
folder. The actual folders for Windows PowerShell may change to v2.0 when PowerShell 2.0 RTM is
released.

Launching Windows PowerShell
Windows PowerShell can be launched in several ways. This section describes the different methods. No
method is superior to the others. It is just a matter of preference.

10

Chapter 1: What Is Windows PowerShell?

Using the Command console
To launch Windows PowerShell using the command console, open the command console and then type
powershell, as shown in Figure 1-13.

Figure 1-13

Using All Programs
You can also click Start � All Programs � Windows PowerShell V2 (CTP3), and then select and click
Windows PowerShell V2 (CTP3), as shown in Figure 1-14.

Figure 1-14

You may also see Windows PowerShell ISE (CTP3) in the Windows Program menu. The Windows Power-
Shell Integrated Scripting Environment (ISE) is a host application for Windows PowerShell. In Windows
PowerShell ISE, you can run commands and write, test, and debug scripts in a single Windows graph-
ical user interface. This book illustrates all Windows PowerShell-related cmdlets and scripts using a
command-line interface. It does not illustrate PowerShell scripts using the ISE.

Once PowerShell is launched, you can see the command prompt. The prompt in the PowerShell com-
mand window varies according to the operating system used.

To be consistent with the PowerShell window title, you could update the shortcut, as illustrated in
Figure 1-15. Right-click on the Windows PowerShell V2 (CTP3) shortcut, click Properties, and under
the General tab, update the title to ‘‘Windows PowerShell’’ and click OK.

Using Start Run
You can also launch PowerShell by clicking Start � Run and typing the following: %systemroot%
\system32\windowsPowerShell\v1.0\PowerShell.exe. Then click OK, as shown in Figure 1-16.

11

Chapter 1: What Is Windows PowerShell?

Figure 1-15

Figure 1-16

Alternatively, you can also launch PowerShell by clicking Start � Run and typing PowerShell.

Windows finds the PowerShell.exe executable from the environment PATH variable and then
launches it.

This opens the PowerShell command console, shown in Figure 1-17.

Figure 1-17

12

Chapter 1: What Is Windows PowerShell?

If you are using 64-bit PowerShell, then you can launch PowerShell by clicking Start � Run and typing
the following: %systemroot%\SysWOW64\WindowsPowerShell\v1.0\PowerShell.exe. Then click OK, as
shown in Figure 1-18.

Figure 1-18

This opens the PowerShell command console, as shown in Figure 1-19.

Figure 1-19

Summary
This chapter discussed the prerequisites for Windows PowerShell, described how to install Windows
PowerShell 2.0 CTP3, and showed various methods to launch PowerShell.

The next chapter covers the various command types and commonly used cmdlets that appear throughout
the book. A Windows PowerShell cmdlet is a simple command used for interaction with any managed
application, including the Windows operating system and applications such as SQL Server, Microsoft
Exchange, and so on.

13

Windows PowerShell
Command Types, Snap-ins,

and cmdlets

Now that you’ve installed Windows PowerShell on your computer, I bet you can’t wait to start run-
ning your own commands to unravel the power of Microsoft’s new command shell. This chapter
introduces you to the new PowerShell commands, or cmdlets. It also introduces you to the collec-
tions of cmdlets called snap-ins. By following all of the examples in this book, you will become
comfortable working with the cmdlets, and you will even be able to tweak the output to your
liking. First, however, this chapter gives you a quick-start on how to run PowerShell commands
interactively.

This chapter covers the following topics:

❑ PowerShell command types

❑ PowerShell snap-ins

❑ Syntax of cmdlets

❑ Command chaining

❑ Getting help

❑ Filtering

❑ Sorting

❑ Formatting

Chapter 2: Command Types, Snap-ins, and cmdlets

PowerShell Command Types
When you launch a new PowerShell window, you are basically executing a small PowerShell.exe
executable, which provides a command-line interface and issues instructions on how to make the func-
tionality in the PowerShell Engine available.

Those instructions are written in .NET language and are available in the form of commands called cmdlets
(pronounced ‘‘command lets’’). All the cmdlets, when executed, process the instructions and return an
object, not just text.

The following four different command types are available in the PowerShell environment. Don’t panic.
PowerShell understands and performs the different types of functions based on the type of commands
that you execute.

❑ Native commands

❑ PowerShell cmdlets

❑ Shell functions

❑ Script commands

The following sections take a closer look at the differences between the different command types in
PowerShell and how each can be used.

Native Commands
Native commands are external executables that the Windows operating system can run. For example,
notepad.exe, calc.exe, or even a batch file can be run from the PowerShell command-line interface.

The following example executes a Windows command shell cmd.exe with the system.ini file as a
parameter, as shown in Figure 2-1:

cmd /c c:\windows\system.ini

Figure 2-1

Once this command is executed, PowerShell recognizes the executable file and passes the command
to the operating system directly. The operating system basically opens the file using the default editor
Notepad.exe, as shown in the Figure 2-2.

If the default editor on your machine is not Notepad.exe, then the operating system opens this exe-
cutable file with your default editor, rather than Notepad.exe.

16

Chapter 2: Command Types, Snap-ins, and cmdlets

Figure 2-2

The next example will launch the Windows calculator. Enter the following command into PowerShell, as
shown in Figure 2-3:

calc

Figure 2-3

Once this command is executed, PowerShell recognizes the executable file and passes the command to
the operating system directly. The operating system launches the calculator, as shown in Figure 2-4.

Figure 2-4

You can also execute a batch file within the Windows PowerShell environment. Create a small batch file,
C:\Batch-Test.bat, that displays the current date and time, as shown here:

@Echo off
Echo The current date is : %date%
Echo The current time is : %time%

17

Chapter 2: Command Types, Snap-ins, and cmdlets

You can execute the batch file in the Windows PowerShell environment using .\ or ./, as shown in
Figure 2-5:

.\Batch-Test.bat

Figure 2-5

PowerShell cmdlets
PowerShell cmdlets are compiled DLL files that are loaded into PowerShell at runtime. Anybody
can write custom cmdlets using the PowerShell Software Development Kit (SDK). You can get more
information on the PowerShell SDK from http://msdn.microsoft.com/en-us/library/ms714469
(VS.85).aspx.

The cmdlets are constructed in verb-noun format. The verb specifies the action that it is going to perform
and the noun specifies the object being operated on. The noun is always singular (not plural), even if it
retrieves or acts on multiple objects.

The following example is a cmdlet that gets all the processes running on the current host machine, as
shown in Figure 2-6:

Get-Process

Figure 2-6

The term get in this command is the verb, and the term process is the noun, so the cmdlet ‘‘gets’’ all the
‘‘processes’’ running on the current host.

Amazing, isn’t it? You don’t have to use VBScript to query the WMI win32 process class and get the
process information and format the result. Just a simple Get-Process command will do that for you.

18

Chapter 2: Command Types, Snap-ins, and cmdlets

We know this makes you wonder what other amazing cmdlets are available that you could use in your
environment. If you would like to know the basic definitions of cmdlets and other elements of all the
PowerShell commands in the current PowerShell environment, you can run the following cmdlet, as
shown in Figure 2-7:

Get-Command

Figure 2-7

Figure 2-7 shows the names of the cmdlets and their definitions.

Windows PowerShell 2.0 CTP3 also has a feature called Tab Completion. With this feature, you don’t
have to type the entire cmdlet every time it is used. You can just type the beginning of the cmdlet — for
example, Get-PS, and press the Tab key. PowerShell will automatically complete your cmdlet with the
cmdlet starting with Get-PS. If more than one cmdlet starts with Get-PS, then press the Tab key again
and PowerShell will show you the next available cmdlet that starts with Get-PS. Continue pressing the
Tab key until you see the cmdlet that you want to use.

For example, if you type Get-PS and press the Tab key several times, all of the following cmdlets will
appear, in ascending order:

❑ Get-PSBreakpoint

❑ Get-PSCallStack

❑ Get-PSDrive

❑ Get-PSProvider

❑ Get-PSSession

❑ Get-PSSessionConfiguration

❑ Get-PSSnapin

Shell Function Commands
Shell function commands are subroutines that you can create and have available throughout the current
PowerShell session. If a block of code is often re-used in the main code, then you can create a function
and call the function wherever necessary within the main code.

19

Chapter 2: Command Types, Snap-ins, and cmdlets

Here is an example of how to create a simple function. This function lists all the files with the extension
.ini under the C:\Windows folder. Shell functions are discussed in more detail in Chapter 4.

function list-ini {Get-ChildItem c:\windows*.ini}

Once the preceding command is executed (see Figure 2-8), the function list-ini is created.

Figure 2-8

This list-ini function can be called anywhere in the current session. Execute the function as shown
in Figure 2-9. Once the function name is called, PowerShell recognizes it as a function code block and
executes the code block defined in the actual function list-ini. The following command requests all the
files with the extension .ini under C:\Windows folder:

list-ini

Figure 2-9

Functions can be made persistently available in all the Windows PowerShell sessions by adding them to
the PowerShell profile. You will see examples of the Windows PowerShell profile and its uses in detail in
Chapter 5.

Script Commands
Script commands are a set of executable PowerShell cmdlets stored in a file with the .ps1 extension.

You can create a simple Add-Num.ps1 script using Notepad under the directory C:\DBAScripts, as shown
in the following example. This script file, shown in Figure 2-10, accepts two variables, $variable1 and
$variable2, as parameters and stores the sum to a third variable, $variable3. It then displays the value
of $variable3.

==
#
NAME: Add-Num.ps1

20

Chapter 2: Command Types, Snap-ins, and cmdlets

#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: This script accepts two numbers, sums the
two numbers and display the result
#
==

param (
[int] $variable1,
[int] $variable2
)

$variable3=$variable1+$variable2;
$variable3

You can use any text editor to write a PowerShell Script file, not just Notepad.

Figure 2-10

Here, all the information that appears after the pound symbol (#) will be ignored by Windows PowerShell
because that tells PowerShell that those are comments. Beginning with PowerShell 2.0 CTP3, you can use
multi-line comments using <# and #>.

Because you created the PowerShell script Add-Num.ps1 under C:\DBAScripts, you have to navigate
to the folder DBAScripts. The cmdlet Set-Location can be used to move the location from the current
folder to the DBAScripts folder, as shown in Figure 2-11.

Then the PowerShell script Add-Num.ps1 can be executed using .\ or ./, as shown in Figure 2-11.

Set-Location C:\DBAScripts
.\add-num.ps1 100 200
./add-num.ps1 10 200

When executing the script, if PowerShell returns the warning message ‘‘Script cannot be loaded because
execution of script is disabled,’’ then execute the following command, followed by the script shown in

21

Chapter 2: Command Types, Snap-ins, and cmdlets

Figure 2-11

Figure 2-12. By default, execution of any PowerShell script is restricted for security reasons, but you can
use the cmdlet set-executionpolicy to make it unrestricted.

Set-ExecutionPolicy Unrestricted

Figure 2-12

More PowerShell scripts and securities are shown in detail in later chapters.

Calling PowerShell cmdlets or Scripts from the Command
Shell

PowerShell functionality can be used from other shells such as command shell. The PowerShell.exe
executable accepts numerous parameters, such as a console file or a command.

You can execute .ps1 files by passing them as parameters to the PowerShell executable, as shown in
Figures 2-13 and 2-14. Launch the command shell by running the following command from Start � Run,
as shown in Figure 2-13:

cmd.exe

At the command prompt, execute the following command as shown in Figure 2-14. This PowerShell.exe
executable accepts the parameter name -command and the parameter value Add-Num.ps1 with parameters
100 and 400:

PowerShell -command C:\DBAScripts\add-num.ps1 100 400

22

Chapter 2: Command Types, Snap-ins, and cmdlets

Figure 2-13

Figure 2-14

You can execute a PowerShell cmdlet directly from the command shell as shown here and in Figure 2-15:

PowerShell -command Get-Process

Figure 2-15

PowerShell Snap-ins
PowerShell cmdlets are contained in PowerShell snap-ins. PowerShell snap-ins are a group of Power-
Shell cmdlets or providers that extend the functionality of the shell. When a snap-in is loaded into the
PowerShell environment, the cmdlets and providers contained in it are registered with the shell.

By default, seven core snap-ins are loaded, and their corresponding cmdlets are available when Power-
Shell is launched. Each core snap-ins has its own namespace:

❑ Core

❑ Host

23

Chapter 2: Command Types, Snap-ins, and cmdlets

❑ Management

❑ Security

❑ Utility

❑ Diagnostics

❑ WSMAN.Management

Execute the following PowerShell cmdlet to see all the snap-ins that are loaded into the current Power-
Shell environment, as shown in Figure 2-16.

Get-PSSnapin

Figure 2-16

The following sections describe each of the snap-ins and their cmdlets. Most of the cmdlets listed here are
described and demonstrated throughout the remaining chapters. The following section provides basic
information about how to get all the cmdlets available in each snap-in.

You can also check Appendix A for more details about each cmdlet in each snap-in.

Core
The namespace of the Core snap-in is Microsoft.PowerShell.core. This snap-in contains cmdlets related
to the PowerShell engine, such as aliases, environments, variables, and functions.

You can find all the cmdlets available in the namespace Microsoft.PowerShell.core using the simple
cmdlet shown in Figure 2-17.

24

Chapter 2: Command Types, Snap-ins, and cmdlets

Here, two cmdlets are used. One is Get-Command, which provides the commands available in Power-
Shell. The other is Where-Object, which is used for filtering the result. The pipe (|)is used for command
chaining. More about command chaining is explained later in this chapter.

Get-Command -commandtype cmdlet | Where-Object {$_.PSSnapin -match "core"}

Figure 2-17

Host
The namespace of the Host snap-in is Microsoft.PowerShell.Host. This snap-in contains cmdlets related
to hosting, such as start-transcript and stop-transcript.

You can find all the cmdlets available in the namespace Microsoft.PowerShell.host using the following
cmdlet, shown in Figure 2-18:

Get-Command -commandtype cmdlet | Where-Object {$_.PSSnapin -match "host"}

Figure 2-18

PowerShell.Management
The namespace of the Management snap-in is Microsoft.PowerShell.Management. This snap-in contains
cmdlets related to windows management, such as managing services and processes, and so on.

25

Chapter 2: Command Types, Snap-ins, and cmdlets

You can find all the cmdlets available in the namespace Microsoft.PowerShell.Management using the
following cmdlet, shown in Figure 2-19:

Get-Command –commandtype cmdlet | Where-Object {$_.PSSnapin -match
"PowerShell.Management"}

Figure 2-19

Security
The namespace of the Security snap-in is Microsoft.PowerShell.Security. This snap-in contains cmdlets
related to PowerShell security, such as Get-Acl and Set-ExecutionPolicy.

You can find all the cmdlets available in the namespace Microsoft.PowerShell.Security using the follow-
ing cmdlet:

Get-Command -commandtype cmdlet | Where-Object {$_.PSSnapin -match "Security"}

Figure 2-20 shows some of the commonly used cmdlets, including their descriptions, related to the Secu-
rity snap-in.

Figure 2-20

26

Chapter 2: Command Types, Snap-ins, and cmdlets

Utility
The namespace of the Utility snap-in is Microsoft.PowerShell.Utility. This snap-in contains cmdlets that
can retrieve and manipulate data, such as write-host, Format-List, and so on.

You can find all the cmdlets available in the namespace Microsoft.PowerShell.Utility using the following
cmdlet:

Get-Command -commandtype cmdlet | Where-Object {$_.PSSnapin -match "Utility"}

Figure 2-21 shows some of the commonly used cmdlets, including their descriptions, related to the Utility
snap-in.

Figure 2-21

Diagnostics
The namespace of the Diagnostic snap-in is Microsoft.PowerShell.Diagnostics. This snap-in contains
cmdlets related to performance counters and event logs.

You can find all the cmdlets available in the namespace Microsoft.PowerShell.Diagnostics using the
following cmdlet, shown in Figure 2-22:

Get-Command -commandtype cmdlet | Where-Object {$_.PSSnapin -match "Diagnostics"}

Figure 2-22

27

Chapter 2: Command Types, Snap-ins, and cmdlets

WsMan.Management
The namespace of the WsMAN.Management snap-in is Microsoft.WsMan.Management. This snap-in
contains cmdlets related to WsMan.

You can find all the cmdlets available in the namespace Microsoft.WsMan.Management using the follow-
ing cmdlet, shown in Figure 2-23:

Get-Command -commandtype cmdlet | Where-Object {$_.PSSnapin -match
"WsMan.Management"}

Figure 2-23

cmdlets related to WsManagement are very new and currently there is little documentation for Power-
Shell 2.0 CTP3. This should change, however, after its official release. Such documentation, when it
becomes available, will help you understand more about each of the cmdlets and enable you to explore
their functionality and usage.

PowerShell cmdlet Syntax
As stated earlier in this chapter, cmdlets are constructed in verb-noun format. The verb specifies the action
to be performed and the noun specifies the object being operated on. Recall that the noun is always
singular, even if it retrieves or acts on multiple objects or data.

Two examples are the cmdlet Get-process and Write-host.

Most cmdlets accept parameters. All parameters names are prefixed with a hyphen, and all the parameter
values are prefixed with a blank space after the parameter name. There are two types of parameters:
named parameters and positional parameters.

Named Parameter
This is the easiest and most common way to use parameters. Basically, you specify the name of the
parameter followed by its value — for example, Get-Process –Name smss:

Get-Process –Name smss

28

Chapter 2: Command Types, Snap-ins, and cmdlets

Get-process is the cmdlet, Name is the parameter name, and smss is the parameter value.

Parameter values can be substituted with wildcards as well, as shown here and in Figure 2-24:

Get-Process –Name s*

Figure 2-24

Positional Parameter
PowerShell allows us to omit the parameter name completely for certain parameters. In the previous
example, name is a positional parameter in the first position; therefore, it can be called without the param-
eter name (see Figure 2-25), as shown here:

Get-Process s*

Figure 2-25

You can easily find all the positional parameter of a PowerShell cmdlet by executing the following cmdlet
(see Figure 2-26):

(Get-Help Get-Process).parameters.parameter

29

Chapter 2: Command Types, Snap-ins, and cmdlets

Figure 2-26

Figure 2-26 shows the end of the output. As you can see, the value of the Position? property of the Name
parameter is 1, so Name is a positional parameter at position 1.

Windows PowerShell supports the following six common parameters on all the cmdlets:

❑ Debug

❑ ErrorAction

❑ ErrorVariable

❑ OutputBuffer

❑ OutputVariable

❑ Verbose

Two other commonly used parameters available in certain cmdlets provide options for ‘‘what if’’ scenar-
ios and choosing confirmation (Yes/No):

❑ WhatIf

❑ Confirm

For more information regarding the common parameters, run the following command:

Get-Help about_CommonParameters

Command Chaining
As in UNIX and Linux, PowerShell cmdlets can be chained together using a pipeline. Command chaining
is having the output of one command feed into, or act as the input to, another command. This was shown
earlier in Figure 2-23.

In the following command example, the output of Get-Process is fed to the cmdlet Where-Object. The
output of the cmdlet Where-Object is fed to the cmdlet Sort-Object.

As you already know, the cmdlet Get-Process shows all the processes on the current local machine.
When the output of the Get-Process is fed to Where-Object using command chaining, the Where-Object
processes each item from the output of Get-Process and looks for the processname equal to the value

30

Chapter 2: Command Types, Snap-ins, and cmdlets

"rundll32". Then the filtered output of Where-Object is passed to Sort-Object, which sorts the database
based on the Object ID value in descending order (see Figure 2-27).

Get-Process | Where-Object {$_.Processname -eq "rundll32"} | Sort-Object ID –desc

Figure 2-27

Hence, the output shown in Figure 2-27 is the result of command chaining. You will be using command
chaining throughout this book.

Getting Help
Microsoft documented all the cmdlets and that documentation can be retrieved using the cmdlet Get-
Help. This documentation is similar to using the man command in the UNIX and Linux environment. In
addition, certain parameters can be used with Get-Help to get detailed information and examples.

The cmdlet Get-Help can be used in three different ways:

❑ Get-Help with no parameter:

Get-Help Get-Process

This provides the minimal information needed to understand and use the cmdlet. The following
information is returned when executed (see Figure 2-28):

❑ Name

❑ Synopsis

❑ Detailed Description

❑ Related Links

❑ Remarks

❑ Get-Help with the –detailed parameter:

Get-Help Get-Process –detailed

31

Chapter 2: Command Types, Snap-ins, and cmdlets

Figure 2-28

This returns the following information when executed (see Figure 2-29):

❑ Name

❑ Synopsis

❑ Syntax

❑ Detailed Description

❑ Parameters

❑ Examples

❑ Remarks

Figure 2-29

❑ Get-Help with the –full parameter:

Get-Help Get-Process –full

This provides all of the following (see Figure 2-30):

❑ Name

❑ Synopsis

32

Chapter 2: Command Types, Snap-ins, and cmdlets

❑ Syntax

❑ Detailed Description

❑ Parameters

❑ Input Types

❑ Return Type

❑ Notes

❑ Examples

❑ Related Links

Figure 2-30

When using the -full and -detailed parameters, the documentation expands to several pages and
flashes through screen and it is very difficult to read all of them if you do not have enough screen buffer.
You can use command chaining with the MS-DOS executable more to page the documentation, as shown
here:

Get-Help Get-Process -Full | more

This causes the output to be displayed one screen at a time. You can scroll the pages from one screen
to another by pressing the spacebar or Enter key. You can abort the display of paging using Ctrl + C.
Figure 2-31 shows the same Get-Help Get-Process cmdlet using more.

Figure 2-31

33

Chapter 2: Command Types, Snap-ins, and cmdlets

Alternatively, you can just use the built-in Help function. The Help function actually pipes the result
from the Get-Help cmdlet to more to support paging, as shown in the following example:

Help Get-Process -Full

Filtering
The cmdlets can produce humongous results. Not all of the columns and rows that are displayed as
output are useful all the time. You may need to filter the results. PowerShell provides two cmdlets for
filtering: Where-Object and Select-Object.

As shown earlier when you ran the Get-Process cmdlet, it returns all the processes running on the
current host (see Figure 2-32):

Get-Process

Figure 2-32

If, for example, you’re only interested in the processes that start with ‘‘s’’, then you can use the Where-
Object cmdlet as shown here and in Figure 2-33:

Get-Process | Where-Object {$_.Processname -like "s*"}

Figure 2-33

34

Chapter 2: Command Types, Snap-ins, and cmdlets

Basically, $_ is substituted with the actual output of Get-Process row by row and evaluated against the
–like operator with the value s*.

If you want to list all the processes that start with ‘‘s’’ excluding the process name svchost, then you can
use the and and ne operators in the Where-Object, as shown here (see Figure 2-34):

Get-Process | Where-Object {$_.Processname -like "s*" –and $_.Processname –ne
"svchost" }

Figure 2-34

The following table shows the comparison operators available in PowerShell.

Comparison Operator Meaning Example (returns true)

-eq Is equal to 1 -eq 1

-ne Is not equal to 1 -ne 2

-lt Is less than 1 -lt 2

-le Is less than or equal to 1 -le 2

-gt Is greater than 2 -gt 1

-ge Is greater than or equal to 2 -ge 1

-like Is like (wildcard comparison for text) "file.doc" -like "f*.do?"

-notlike Is not like (wildcard comparison for text) "file.doc" -notlike "p*.doc"

-contains Contains 1,2,3 -contains 1

-notcontains Does not contain 1,2,3 -notcontains 4

-ceq Case sensitive equal to a -ceq a

-cne Is not equal to a -cne A

35

Chapter 2: Command Types, Snap-ins, and cmdlets

The next table shows the logical operators available.

Logical Operator Meaning Example (returns true)

-and Logical and; true if both sides are true (1 -eq 1) -and (2 -eq 2)

-or Logical or; true if either side is true (1 -eq 1) -or (1 -eq 2)

-not Logical not; reverses true and false -not (1 -eq 2)

! Logical not; reverses true and false !(1 -eq 2)

You can also filter items up front in the Get-Process itself, as shown here and in Figure 2-35:

Get-Process s* | Where-Object {$_.Processname -ne "svchost"}

Figure 2-35

If the operator needs to use numerical values, then you can use numerical operators, as shown here and
in Figure 2-36:

Get-Process | Where-Object {$_.Handles -gt 1100 -and $_.CPU -gt 5}

Figure 2-36

36

Chapter 2: Command Types, Snap-ins, and cmdlets

When you execute the Get-Process cmdlet, the default display of a process is a table that includes the
following columns:

❑ Handles

❑ NPM(K)

❑ PM(K)

❑ WS(K)

❑ VM(M)

❑ CPU(s)

❑ ID

❑ ProcessName

However, if you only want to view some of the columns in the output, use the cmdlet Select-Object, as
shown here (see Figure 2-37):

Get-Process | Select-Object ID, Processname

Figure 2-37

With Select-Object, you can select unique values, as shown here (see Figure 2-38):

Get-Process | Select-Object Processname –unique

Figure 2-38
37

Chapter 2: Command Types, Snap-ins, and cmdlets

As shown in Figure 2-38, duplicate csrss, fdhost and fdlauncher processes have been filtered out.

Sor ting
When executed, cmdlets produce output based on the default sort order of the cmdlet. You can change
this output behavior using Sort-Object.

You can sort the output in ascending, descending, or alphabetical order using Sort-Object as shown in
Figures 2-39, Figure 2-40, and Figure 2-41, respectively.

This cmdlet sorts the output in ascending order:

Get-Process s* | Sort-Object CPU

Figure 2-39

This cmdlet sorts the output in descending order because the -desc parameter is used:

Get-Process s* | Sort-Object CPU –desc

Figure 2-40

38

Chapter 2: Command Types, Snap-ins, and cmdlets

This command sorts the output of the Get-Service cmdlet alphabetically based on the column
DisplayName. The default sort order for Get-Service is based on the column Name:

Get-Service | Sort-Object DisplayName

Figure 2-41

Formatting
Any cmdlet you execute is piped to a default cmdlet, Out-Default. The Out-Default cmdlet, in turn,
pipes the output to the default formatter. The default formatter then displays the output.

The PowerShellcore.format.ps1xml file under the PowerShell installation directory contains extensive
information explaining how different types of objects are displayed.

The default formatter can be overridden by the Format-Table, Format-List, Format-Wide, and
Format-Custom cmdlets, as shown in Figure 2-42. Here is an example:

Get-Process s* | Format-Table ID, ProcessName, CPU

Figure 2-42

Formatting with autosize will show the results in more readable output (see Figure 2-43):

Get-Process s* | Format-Table ID, ProcessName, ID, CPU –autosize

39

Chapter 2: Command Types, Snap-ins, and cmdlets

Figure 2-43

You can format the output by grouping it based on a property (see Figure 2-44):

Get-Process s* | Group-Object ProcessName

Figure 2-44

You can also group using Format-Table. The result is different because you are not using Group-Object
(see Figure 2-45):

Get-Process s* | Format-Table -group ProcessName

As shown in Figure 2-46, you can format the output column names using expressions:

Get-Process s* | Format-Table @{expression="Processname"; width=25; label="Process
Name"}, @{expression = "CPU"; width=15; label = "CPU Used"}

You can also output the result in the form of a list by using the Format-List cmdlet, as shown in
Figure 2-47:

Get-Process s* | Format-List

40

Chapter 2: Command Types, Snap-ins, and cmdlets

Figure 2-45

Figure 2-46

Figure 2-47

41

Chapter 2: Command Types, Snap-ins, and cmdlets

Another use of Format-List is to list all the properties of the cmdlet (see Figure 2-48):

Get-Process s* | Format-List -property *

Figure 2-48

After you get the list of all the properties, you can override the default column display with your own
list, as shown in Figure 2-49:

Get-Process s* | Format-Table -property Name, Company, Product

Figure 2-49

Summary
This chapter illustrated the various command types — namely, native commands, shell function com-
mands, script commands, and cmdlets. In the rest of the chapters, you will use these four command
types in various situations. This chapter also demonstrated different types of snap-ins and their corre-
sponding cmdlets. When it comes to handling the output of the cmdlets, this chapter illustrated cmdlets
related to command chaining, formatting, grouping and sorting, and more. All the formatting procedures
and command chaining described in this chapter are used throughout the book. You will revisit function-
ality such as creating functions in future chapters. The next two chapters show you how to re-use a set of
commands by encapsulating them in scripts and functions.

42

Windows PowerShell
Programming , Scripting ,

Error Handling, and
Debugging

In Chapter 2, you learned how to use PowerShell cmdlets, command chaining, and command
snap-ins. You also learned about formatting, grouping, and sorting. This chapter discusses and
illustrates all the PowerShell programming constructs, including using variables, arrays, looping,
inputs and outputs, and more. Though all the programming constructs discussed in this chapter can
be used in the Windows PowerShell interactive mode, they are primarily used inside the Windows
PowerShell scripts. Scripts are a group of PowerShell cmdlets that, for the most part, accept input as
parameters and output in the form of files, and all programming logic is encapsulated in the script.
These scripts are used for automation.

This chapter covers the following topics:

❑ PowerShell variables

❑ Arrays

❑ Expressions

❑ Conditional expressions

❑ Loop construct

❑ Inputs

❑ PowerShell scripting

❑ Text file as input

Chapter 3: Programming, Scripting, Error Handling, and Debugging

❑ Writing to a file

❑ Error handling

❑ Debugging

PowerShell Scripts
PowerShell scripts are cmdlets put together in a .ps1 file. This is similar to any programming language.
The basic requirement of any programming language is input commands, processing commands, and
output commands. Other commands, such as error handling and debugging, are also required.

PowerShell provides all the basic requirements for programming PowerShell scripts, and all these com-
mands available in the form of cmdlets are object oriented.

The following list contains the basic requirements of any programming language:

❑ Input

❑ User input from the console

❑ User input as parameters

❑ File input

❑ Processing

❑ Operators

❑ Expressions

❑ Loop constructs

❑ Variables

❑ Output

❑ Output to users on the console

❑ File output

❑ Error Handling

❑ Debugging

Before jumping into input and output, it’s useful to take a look at where the input data and intermediate
processing results are stored, namely, the variables. All types of variables and how they store information
are discussed in the following section.

PowerShell Variables
PowerShell variables are not the same as variables in other languages where only scalar values are stored.
Rather, PowerShell variables hold the entire object. They are not just a placeholder for scalar values.

44

Chapter 3: Programming, Scripting, Error Handling, and Debugging

PowerShell variables are prefixed with the dollar symbol ($). You can assign the variable as you would
in any other language using the equals operator (=).

Before exploring the variables, navigate to the root folder of the current drive in PowerShell by execut-
ing the following cmdlet. This will give you more screen room to work with all the illustrations in this
chapter.

Set-location C:\

Now assign the cmdlet string to a variable as shown in the following example. Here you are using a
variable $myvar and assigning the resulting object of the get-process cmdlet to it using the = assignment
operator.

$myvar=get-process s*

Execute the variable as shown in Figure 3-1.

$myvar

Figure 3-1

You can use various operators in Windows PowerShell, many of which are used throughout the rest of
this book. For a complete list of Windows PowerShell operators, jump to the ‘‘Operators’’ section located
at the end of this chapter.

Now assign a numerical value to a variable $mynumvar and a string value to another variable $mystrvar,
as shown here:

$mynumvar=100
$mystrvar="This is test"

As discussed earlier, all the variables are basically an object. In the preceding example, two kinds of
variables were used. One is a numeric variable and the other is a string variable. In order to find out
the properties and methods of those defined variables, use the Get-Member cmdlet, as shown here (see
Figure 3-2 and Figure 3-3):

$mynumvar | get-member
$mystrvar | get-member

45

Chapter 3: Programming, Scripting, Error Handling, and Debugging

Figure 3-2

Figure 3-3

You can see that all the methods and properties of both variables are listed. You can use any of the
methods and properties for that object. The following example calls the ToUpper method and converts
the string to uppercase:

$mystrvar.ToUpper()

The following example gets the value of the property Length and displays the value (see Figure 3-4):

$mystrvar.Length

Figure 3-4

46

Chapter 3: Programming, Scripting, Error Handling, and Debugging

The following expressions assign, concatenate, replace, and repeat (see Figure 3-5). Here, the operator =
is for assignment and the operator + is for concatenation. The operator -replace replaces "World" with
"universe".

$var1="hello"
$var2="world"
$var1.toupper()+$var2.toupper()

$var1.toupper()*2+$var2.toupper()

$var1.toupper()*2+$var2.toupper() -replace "World","universe"

Figure 3-5

You can assign date values to a variable as shown and manipulate the output by using simple
expressions.

In the next example, the expression $mydate=get-date assigns the object get-date, which has the cur-
rent date and time value, to a variable $mydate. $mydate.year will display the value of the object prop-
erty year. The expression $mydate.month displays the value of the object property month. $mydate.day
+1 adds 1 to the object property day and displays the resulting value (see Figure 3-6):

$mydate=get-date
$mydate.year
$mydate.month
$mydate.day
$mydate.day+1

Figure 3-6

47

Chapter 3: Programming, Scripting, Error Handling, and Debugging

Arrays
Arrays are used to implement mathematical vectors and matrices, as well as other kinds of rectangular
tables. PowerShell variables can also store array values. The following example creates a numerical array
with five elements, 10, 20, 30, 40, and 50, as shown in Figure 3-7:

$mynumarray =10,20,30,40,50

This example displays the fourth element from the array:

$mynumarray[3]

Array elements are accessed using an index, also known as an origin. There are different kinds of index
implementations: zero-based, one-based, n-based, and so on. Windows PowerShell arrays follow a zero-
based index. Hence, in the preceding example, $mynumarray[3]is basically pointing to the fourth element
in the array.

Figure 3-7

Next, create a string array with three elements using the following code. Assigning a string to an array
is similar to assigning numerical values to an array. The following example assigns three string values to
an array and displays the second position. After that, it displays all the elements available in the array.
When you call the array without any address, it displays all the elements, as shown in Figure 3-8.

$mystrarray="Alan","Charlie","Jake"
$mystrarray[1]
$mystrarray

Figure 3-8

PowerShell can also store associative arrays. An associative array stores data in the form of paired keys
and values. The following example stores the three keys FirstName, LastName, and Salary with the
values "Alan", "Harper", and 1000.00, respectively. You can retrieve the value of the array by calling
the address, which in this case is the key (see Figure 3-9).

$myhash=@{FirstName="Alan";Lastname="Harper";Salary=1000.000}
$myhash["FirstName"]
$myhash.FirstName

48

Chapter 3: Programming, Scripting, Error Handling, and Debugging

Figure 3-9

Expressi ons
In any programming language, expressions are a combination of values, operators, variables, and func-
tions that are evaluated by the program and produce results.

Expressions in PowerShell are very straightforward. The following example demonstrates how arithmetic
expressions work. In this example, you assign the value 100 to $myvar1 and the value 75 to $myvar2. Then
you basically multiply, divide, and get the modulus between the two variables (see Figure 3-10).

$myvar1=100
$myvar2=75
$myvar1*$myvar2
$myvar1/$myvar2
$myvar1%$myvar2

Figure 3-10

The following example demonstrates how to assign string values to two variables and then concatenate
both string values by using the plus (+) operator (see Figure 3-11):

$mystr1="Hello"
$mystr2="World"
$mystr1+$mystr2

Figure 3-11

Expressions cannot exist without operators, described in the next section.

49

Chapter 3: Programming, Scripting, Error Handling, and Debugging

Operators
Any programming language generally supports numeric operators similar to mathematical operators.
In addition to the numeric operators, PowerShell also supports other operators. The following tables
describe the operators available in PowerShell.

Numeric Assignment
Operator

Description

= Assigns a value to a variable

+= Adds the value of the right side of the assignment to the existing value
of the left side and assigns the result to the variable on the left side

−= Subtracts the value of the right side of the assignment from the existing
value of the left side and assigns the result to the variable on the left
side

*= Multiplies the value of the right side of the assignment and the existing
value of the left side and assigns the result to the variable on the left
side

/= Divides the value of the left side of the assignment into the existing
value of the right side and assigns the result to the variable on the left
side

%= Divides the value of the left side of the assignment into the existing
value of the right side and assigns the remainder to the variable on the
left side

Logical Operator Description

-and Is true if both comparisons are true and only then

-or Is true if one or both comparisons is true

-not Negation

! Negation. Synonym for -not.

Unary Operator Description

+ Signifies explicitly that a number is a positive number

− Signifies that a number is a negative number

++ Increments a value or variable

− Decrements a value or variable

50

Chapter 3: Programming, Scripting, Error Handling, and Debugging

Comparison Operator Description

-eq Tests for equality

-ne Tests for inequality

-gt Tests whether the value on the left is greater than the value on the right

-ge Tests whether the value on the left is greater than or equal to the value on
the right

-lt Tests whether the value on the left is less than the value on the right

-le Tests whether the value on the left is less than or equal to the value on the
right

-like Tests, using wildcards, whether two values match. The wildcard(s) go on
the right side.

-notlike Tests, using wildcards, whether two values fail to match. The wildcard(s)
go on the right side.

-match Tests, using regular expressions, whether two values match. The regular
expression goes on the right side.

-notmatch Tests, using regular expressions, whether two values fail to match. The
regular expression goes on the right side.

-ceq Tests for case-sensitive equality

-cne Tests for case-sensitive inequality

-cgt Tests whether the value on the left is greater than the value on the right.
Case-sensitive comparison.

-cge Tests whether the value on the left is greater than or equal to the value on
the right. Case-sensitive comparison.

-clt Tests whether the value on the left is less than the value on the right.
Case-sensitive comparison.

-cle Tests whether the value on the left is less than or equal to the value on the
right. Case-sensitive comparison.

-clike Tests, using wildcards, whether two values match. The wildcard(s) go on
the right side. Case-sensitive comparison.

-cnotlike Tests, using wildcards, whether two values fail to match. The wildcard(s)
go on the right side. Case-sensitive comparison.

-cmatch Tests, using regular expressions, whether two values match. The regular
expression goes on the right side. Case-sensitive matching.

-cnotmatch Tests, using regular expressions, whether two values fail to match. The
regular expression goes on the right side. Case-sensitive matching.

-ieq Tests for case-insensitive equality

Continued

51

Chapter 3: Programming, Scripting, Error Handling, and Debugging

Comparison Operator Description

-ine Tests for case-insensitive inequality

-igt Tests whether the value on the left is greater than the value on the right.
Case-insensitive comparison.

-ige Tests whether the value on the left is greater than or equal to the value on
the right. Case-insensitive comparison.

-ilt Tests whether the value on the left is less than the value on the right.
Case-insensitive comparison.

-ile Tests whether the value on the left is less than or equal to the value on the
right. Case-insensitive comparison.

-ilike Tests, using wildcards, whether two values match. The wildcard(s) go on
the right side. Case-insensitive comparison.

-inotlike Tests, using wildcards, whether two values fail to match. The wildcard(s)
go on the right side. Case-insensitive comparison.

-imatch Tests, using regular expressions, whether two values match. The regular
expression goes on the right side. Case-insensitive matching.

-inotmatch Tests, using regular expressions, whether two values fail to match. The
regular expression goes on the right side. Case-insensitive matching.

String Operator Description

+ Concatenates two strings

* Repeats a string some number of times

-f Formats a string

-replace Replaces the string with another string

-match Regular expression match

-like Wildcard matching

Now that you are familiar with the various operators, the next section describes how the comparison
operators are used.

Conditional Expressi ons
As you likely already know, conditional statements, conditional expressions, or conditional constructs
are features of a programming language that perform various computations or actions depending on
whether a programmer-specified condition evaluates to true or false. Windows PowerShell also has such
a feature, called the IF statement.

52

Chapter 3: Programming, Scripting, Error Handling, and Debugging

IF Statement
An IF statement is one of the basic decision-making statements based on the evaluation of a particular
condition.

The following example illustrates whether (if) one of the assigned variable values is greater than the
other. It uses the IF statement to compare two variables and displays the results (see Figure 3-12):

$myvar1=100
$myvar2=200
if ($myvar1 -gt $myvar2)
{write-host $myvar1" is Greater than" $myvar2}
else
{write-host $myvar2" is Greater than" $myvar1}

Figure 3-12

IF statements can also be used with multiple ELSEIF conditions. The following example demonstrates
different grades based on actual scores using multiple IF conditions (see Figure 3-13):

$myscore=75
if ($myscore -gt 50 -and $myscore -lt 60)
{write-host "Grade C"}
elseif ($myscore -gt 60 -and$myscore -lt 70)
{write-host "Grade B"}
elseif ($myscore -gt 70 -and $myscore -lt 80)
{write-host "Grade B+"}
elseif ($myscore -gt 80 -and$myscore -lt 90)
{write-host "Grade A"}
elseif ($myscore -gt 90)
{write-host "Grade A+"}
else
{write-host "Grade C-"

Multiple ELSEIF statements can be rewritten using a switch statement, as shown here (see Figure 3-14):

$Disk = get-WmiObject win32_logicaldisk
foreach ($Drive in $Disk)
{switch ($Drive.DriveType) {
1{ $Drive.DeviceID + " Unknown" }
2{ $Drive.DeviceID + " Floppy" }
3{ $Drive.DeviceID + " Hard Drive" }
4{ $Drive.DeviceID + " Network Drive" }

53

Chapter 3: Programming, Scripting, Error Handling, and Debugging

5{ $Drive.DeviceID + " CD" }
6{ $Drive.DeviceID + " RAM Disk" }
}}

Figure 3-13

Figure 3-14

Note that the preceding example also includes a foreach loop. We discuss that in detail in the next
section.

Loop Constr uct
In any programming language, loops are statements that enable a piece of code to be executed repeatedly.
Windows PowerShell provides a few looping constructs.

Loops are very important and significant when you have to iterate through all the items in an object. This
section covers the following loop constructs:

❑ For loop

❑ While loop

❑ Do-While loop

54

Chapter 3: Programming, Scripting, Error Handling, and Debugging

❑ Do-Until loop

❑ foreach statement

For Loop
For loop is one of the most commonly used loops in programming languages. This for loop construct is
similar to C language and has three parts:

1. init-expr, if it exists, is executed. Typically this initializes one or more counters, and may
also declare them as well.

2. eval-expr evaluates the current condition. If it is true, then it continues the loop.

3. increment-expr is executed if it exists. Typically this increases or increments by one or more
counters.

The next example, shown in Figure 3-15, illustrates the multiplication table for 5. Basically, it starts the
loop with value 0, evaluates the value, and determines whether it is less than 11. The loop continues until
the condition is true and increases the value by 1 each time it loops:

$myvar=5
for ($i = 0; $i -lt 11; $i++)
{write-host $i "X" $myvar "=" ($myvar*$i)}

Figure 3-15

While Loop
The same multiplication table can be written using a while loop statement. The difference between a for
loop and a while loop is that the value is initialized before the while loop. With the while loop construct,
the evaluation and the incremental portion of the loop is written inside the loop as an expression. Here
the looping continues until the condition is true (see Figure 3-16):

$myvar=5
$i = 0
while ($i -le 10)
{ write-host $i "X" $myvar "=" ($myvar*$i) ;$i++}

55

Chapter 3: Programming, Scripting, Error Handling, and Debugging

Figure 3-16

Do-While Loop
Additionally, the same multiplication table can be written using the Do while loop statement. The Do
while construct consists of a block of code and a condition. First the code within the block is executed,
and then the condition is evaluated. If the condition is true, then the code within the block is executed
again. Here, the looping continues until the condition becomes false (see Figure 3-17):

$myvar=5
$i = 0
do { write-host $i "X" $myvar "=" ($myvar*$i) ;$i++}
while ($i -le 10)

Figure 3-17

Do-Until Loop
In the next example, shown in Figure 3-18, the same multiplication table is written using the Do until
loop statement. The Do until construct consists of a block of code and a condition. First the code within
the block is executed, and then the condition is evaluated. If the condition is false, then the code within
the block is executed again. The looping continues until the condition becomes true.

$myvar=5
$i = 0
do { write-host $i "X" $myvar "=" ($myvar*$i) ;$i++}
until ($i -eq 11)

56

Chapter 3: Programming, Scripting, Error Handling, and Debugging

Figure 3-18

Foreach Statement
A foreach statement is widely used when you want to iterate through an array or through all the items
in an object.

The following example, shown in Figure 3-19, assigns the resulting object of the Get-process cmdlet
to a variable, and then iterates through all the items in the object and displays them with incremental
numbers on the fly:

$Processes=get-process | select-object ProcessName
$i=1
foreach ($process in $Processes)
{write-host $i "Process Name is " $process.Processname;$i++; }

Figure 3-19

The same foreach statement can be used to iterate through an array. The following example, shown in
Figure 3-20, lists all the elements in an array, does a cumulative addition, and computes the total:

$myarray=10,50,60,22,44,55,667,88
$i=0
$j=0
foreach ($element in $myarray)
{ $j=$j+$element;

57

Chapter 3: Programming, Scripting, Error Handling, and Debugging

Write-host "Array Element Position =" $i "Element value =" $element "Cumulative
Sum =" $j ;

$i++ }
Write-host "Total of all the elements in the array is " $j

Figure 3-20

Now that you have an understanding of the processing elements of a basic programming language,
including variables, operators, expressions, and programming constructs, it’s time to move on to the
various inputs and outputs of the programming.

Input
This section illustrates the various input cmdlets that can be used in the PowerShell environment. The
Read-Host cmdlet is used when you want PowerShell to be very interactive with the user. This is the
basic input command.

The following example requests that the user input two numbers, displaying their sum. Read-Host
cmdlet displays a message to ask the user to provide a value. The message is specified by the Prompt
parameter. Read-Host then assigns the value provided by the user to the variable:

$a = read-host -prompt "Enter a number please"
10
$b = read-host -prompt "Enter a another number please"
25
$a+$b

The result would be as follows (see Figure 3-21):

1025

Figure 3-21

58

Chapter 3: Programming, Scripting, Error Handling, and Debugging

As you can see, PowerShell did a string concatenation of the two values entered, instead of adding the
two values. If you want PowerShell to treat those variables as integers, you can explicitly define them as
such.

The following example explicitly defines two variables as integers and reads the values from the host
using the Read-host cmdlet (see Figure 3-22):

[int]$a = read-host -prompt "Enter a number please"
10
[int]$b = read-host -prompt "Enter a another number please"
25
$a+$b

The result would be as follows:

35

Figure 3-22

There is one other way to provide input to Windows PowerShell: using parameters. Parameters are
discussed briefly in the following section, and in detail in Chapter 4.

PowerShell Scripting
A PowerShell script contains a set of cmdlets that will perform certain tasks. You can create your first
PowerShell script using read-host as input and write-host cmdlets for output display.

First, you need to change your current location from the C:\ folder to the DBAScripts directory using the
following cmdlet. You need to change location to C:\DBAScripts because all the PowerShell scripts that
you are going to write will reside in this folder. It is easier to execute the script in the current folder than
by typing C:\DBAScripts\<scriptname> all the time.

Set-location C:\DBAScripts

Create the following calculate-arith.ps1 PowerShell script as shown here. (You can create it using
Notepad or any other text editor).

==
#
NAME: Calculate-arith.ps1
#
AUTHOR: Yan and MAK

59

Chapter 3: Programming, Scripting, Error Handling, and Debugging

DATE : 4/26/2008
#
COMMENT: Simple Calculator
#
==
[int]$a = read-host -prompt "Enter a number please"

[int]$b = read-host -prompt "Enter a number please"
$c = read-host -prompt "Please select any one of the following operator - + / *

"
Switch ($c){
+ {$a+$b}
− {$a-$b}
* {$a*$b}
/ {$a/$b}
default {write-host "Wrong arithmetic operation" $a $c $b}
}

Execute the PowerShell script calculate-arith.ps1 as shown here. When executing the script, it
prompts for three inputs: Two prompts are for integer values and the third prompt is for the operator.
Provide the values and select the operators several times when prompted (see Figure 3-23).

.\calculate-arith.ps1

Figure 3-23

When a line starts with #, it comments the entire line. PowerShell totally ignores that line. Comments
are very useful for documentation and describing the script.

You can also write a non-interactive PowerShell script by accepting the input values as parameters, as
shown in the following example.

Create the calculate-arith2.ps1 PowerShell script as follows:

==
#
NAME: Calculate-arith2.ps1
#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#

60

Chapter 3: Programming, Scripting, Error Handling, and Debugging

COMMENT: Simple Calculator using parameters
#
==
param (

[int] $a,
[string] $c,
[int] $b

)

Switch ($c){
+ {$a+$b}
− {$a-$b}
* {$a*$b}
/ {$a/$b}
% {$a%$b}
default {write-host "Invalid arithmetic operator" $a $c $b}
}

Execute the PowerShell script calculate-arith2.ps1 (see Figure 3-24).

Figure 3-24

Now create a small PowerShell script that accepts three parameters and displays the multiplication table
for the given number and range. The first parameter accepts the multiplication table number. The second
and third parameters specify the starting and ending range of the multiplication table.

Create the following multi-table.ps1 PowerShell script:

==
#
NAME: multiple-table.ps1
#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: Multiplication table generator
#
==
param (

[double] $MultiplyNumber,
[double] $Startingrange,
[double] $Endingrange

)

61

Chapter 3: Programming, Scripting, Error Handling, and Debugging

$calcnum=0
Write-host "Multiplication table of "$MultiplyNumber
for($i=$Startingrange;$i -le $Endingrange;$i++)
{$calcnum=$MultiplyNumber*$i; write-output "$MultiplyNumber x $i = $calcnum" }

Execute the PowerShell script, as shown in Figure 3-25.

Figure 3-25

Text File As Input
Reading a text file and manipulating the output is very common in the scripting world. You can create a
PowerShell script that will read any file passed as a parameter and display its content with line numbers.
In this next example you will use the cmdlet get-content to read the entire table and assign that to a
variable. Then you use the foreach loop to loop through line by line and display the entire text file.

Create the following read-file.ps1 PowerShell script:

==
#
NAME: Read-File.ps1
#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: Read file and display with line numbers
#
==

param (
[string] $filename

)

$readbuffer=get-content -path $filename
$i=0;
foreach($line in $readbuffer)
{$i++;write-output "$i : $line"}

Execute the PowerShell script read-file.ps1 as shown here (see Figure 3-26):

.\read-file.ps1 c:\windows\system.ini

62

Chapter 3: Programming, Scripting, Error Handling, and Debugging

Figure 3-26

Next, read the SQL Server error log with a new script, read-errorlog.ps1. This script accepts three
parameters. The first parameter is the filename, which is basically the SQL Server error log location. The
second parameter is the date. The script reads the entire error log and displays only the information after
this date value. The third parameter is the number, which represents the number of lines you want the
output to display.

The following script looks for the keyword ‘‘Error:’’ in the error log file and displays only those messages.
It also filters the results based on the date and time. The filtering basically ignores all the lines with the
keyword ‘‘Error:’’ before the date and time passed as a parameter. Filtering also helps in showing only
the number of lines that are passed as a parameter.

You can also see that we use the -encoding unicode parameter name and parameter value when using
the get-content cmdlet. This is because SQL Server 2005 and later creates the error log in Unicode format.

Create the following read-errorlog.ps1 PowerShell script using Notepad:

==
#
NAME: read-errorlog.ps1
#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: Read SQL Server error log for errors
#
==

param (
[string] $filename,
[datetime] $date,
[int] $last

)

$readbuffer=get-content -path $filename -encoding unicode |select-object -last $last
$i=0
[datetime] $mydate

63

Chapter 3: Programming, Scripting, Error Handling, and Debugging

foreach($line in $readbuffer)
{

$i++;
$mydate=$line.substring(0,22)

if($line -ne "")
{

if($mydate -ge $date)
{

if ($line -like "*Error:*")
{

write-output "$i: $line"
}

}
}

}

Execute the script as shown here (see Figure 3-27):

.\read-errorlog.ps1 "C:\Program Files\Microsoft SQL Server\MSSQL10.
MSSQLSERVER\MSSQL\Log\ERRORLOG" "2008-11-11 12:53:16.49" 10

Figure 3-27

Output
As mentioned earlier in this chapter, output is also one of the basic requirements in any programming
language. PowerShell has various output-related cmdlets. This section illustrates how to write the output
to a file.

Writing to the Console
Writing to the console is a common way of treating output in any programming language. The commonly
used output-related PowerShell cmdlets for the console are Write-Output and Write-Host.

64

Chapter 3: Programming, Scripting, Error Handling, and Debugging

The Write-Output cmdlet sends the specified object down the pipeline to the next command. If the com-
mand is the last in the pipeline, the object is displayed on the console.

If you just need to display the objects at the end of a pipeline on the console, it is generally not necessary
to use the cmdlet. For example, Get-Process | Write-Output is equivalent to Get-Process.

Write-Host is another commonly used cmdlet in PowerShell scripting and in interactive mode. You have
already seen various uses of the Write-Host cmdlet in this chapter and previous chapters.

The Write-Host cmdlet customizes output. For example, you can specify the color of text. However, the
blue background color of course doesn’t show up in the black-and-white Figure 3-28.

Write-Host "SQL Server 2008 Administration with Windows PowerShell" -Foregroundcolor
White -Backgroundcolor blue

Figure 3-28

The Write-Host cmdlet is used throughout the rest of the book.

Writing to a File
You can write the output to a local file by using the cmdlet Set-Content. This example creates a script
that will read the SQL Server error log to find lines with the keyword ‘‘Error’’ and write them to a log
file. The read-errorlog2.ps1 file is mostly similar to read-errorlog.ps1 but the cmdlet Set-Content
redirects the output to a filename that is passed as a parameter.

Create the following read-errorlog2.ps1 PowerShell script:

==
#
NAME: read-errorlog2.ps1
#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: Read SQL Server error log for errors
and save it a text file.
==

param (
[string] $infile,

65

Chapter 3: Programming, Scripting, Error Handling, and Debugging

[datetime] $date,
[int] $last,
[string] $Outfile

)

$readbuffer=get-content -path $infile -encoding unicode |select-object -last $last
$i=0

[datetime] $date
[string] $outbuffer
$outbuffer=""

foreach($line in $readbuffer)
{
$i++;
$mydate=$line.substring(0,22)

if($line -ne "")
{
if($mydate -ge $date)
{
if ($line -like "*Error:*")
{
write-output "$i: $line"
$outbuffer=$outbuffer + $line

}

}
}

}

set-content -path $outfile -value $outbuffer

Execute the read-errorlog2.ps1 script with the same parameters as before, and with the addition of an
output filename (see Figure 3-29):

.\read-errorlog2.ps1 "C:\Program Files\Microsoft SQL Server\MSSQL10.
MSSQLSERVER\MSSQL\Log\ERRORLOG" "2008-11-11 12:53:16.49" 10 c:\test.log

Figure 3-29

When the script is executed, it both displays the results on the screen and writes to the log file
C:\test.log, as shown in Figure 3-30.

66

Chapter 3: Programming, Scripting, Error Handling, and Debugging

Figure 3-30

Error Handling
The last basic requirement in any programming language is handling exceptions and errors. Windows
PowerShell provides different methods for handling errors.

There are two types of PowerShell errors: terminating and nonterminating. Terminating errors stop further
execution soon after the error occurs. Conversely, nonterminating errors generally report the error and
continue running.

Both types of errors are logged in the variable $Error. $Error contains all the errors that occurred
in the current session. The collection of errors contains the most recent error in Error[0]until
$MaximumErrorCount, which is 256 by default.

$Error is handled by System.Management.Automation.ErrorRecord.

$error[0] | get-member

The get-member cmdlet, when used in conjunction with $error, will provide all the properties and
methods of this object, as shown in Figure 3-31.

Figure 3-31

67

Chapter 3: Programming, Scripting, Error Handling, and Debugging

The following example attempts to retrieve the content of a file that doesn’t exist in order to simulate an
error, as shown in Figure 3-32, and then tries to get the error information (see Figure 3-36 and Figure 3-37):

get-content testerror.txt
$error[0].InvocationInfo

Figure 3-32

You can display all the errors on the screen just by calling the error variable, $error, as shown here (see
Figure 3-33):

$error

Figure 3-33

68

Chapter 3: Programming, Scripting, Error Handling, and Debugging

There are three ways to handle errors. The first method is by using the parameters ErrorAction and
ErrorVariable (see Figure 3-34).

In the following example, both parameters are used. The parameter ErrorVariable stores the error
details to the error variable MyError. The parameter ErrorAction, with the value SilentlyContinue,
causes PowerShell to continue operation silently:

get-content testerror.txt -ErrorVariable MyError -ErrorAction Silentlycontinue

Figure 3-34

Because the error is stored in the error variable MyError, now the error can be accessed easily (see
Figure 3-35):

if ($MyError) {write-host "File Not Found"}

Figure 3-35

The second method for handling errors is to use the ‘‘throw’’ keyword. Use the Throw keyword when
you want to throw your own terminating errors.

The following example uses the throw keyword if a parameter is not passed to the script. Create the
PowerShell script calculate-arith3.ps1 as shown here:

==
#
NAME: calculate-arith3.ps1
#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: Simple calculator with "Throw"
#
==

param (
[int] $a = $(Throw "Please provide Number as first parameter"),
[string] $c,

69

Chapter 3: Programming, Scripting, Error Handling, and Debugging

[int] $b
)

Switch ($c){
+ {$a+$b}
− {$a-$b}
* {$a*$b}
/ {$a/$b}
% {$a%$b}
default {write-host "Invalid arithmetic operator" $a $c $b}
}

Now execute the PowerShell script calculate-arith3 with no parameters:

.\calculate-arith3.ps1

The script will stop by throwing the error defined, as shown in Figure 3-36.

Figure 3-36

The third method for handling exceptions is to use TRAP. When encountering an error, PowerShell’s
default behavior is to halt and display the error. However, if you just want to trap the error and continue
the rest of the script, then TRAP is very useful.

Create test-trap.ps1, shown here, which checks the Z: drive (which doesn’t exist) and uses the TRAP
command to trap that error and continue the operation:

==
#
NAME: test-trap.ps1
#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: Simple demo of "TRAP"
#
==
function checkdrive ($drive)
{

trap {
write-host "Drive error"
write-host $_.Errorid

70

Chapter 3: Programming, Scripting, Error Handling, and Debugging

write-host $_.Exception.message
}

get-location $drive -Erroraction stop
}

write-host "Starting..."
write-host "Going to check drive"
checkdrive("Z:")
write-host "Completed checking drive"
write-host "Ending"

Now you can execute the PowerShell script testtrap.ps1 as shown here (see Figure 3-37):

.\test-trap.ps1

Figure 3-37

From the output shown, you can see that despite getting the error upon checking the drive, it continued
executing the remaining commands in the script file.

Debugging
PowerShell provides the cmdlet Set-PSDebug to turn debugging on and off.

This section runs some cmdlets with debugging on. The cmdlet Set-PSDebug can be run with two dif-
ferent parameters: Step and Trace. The Step parameter basically makes the script of cmdlets into a very
interactive mode.

Execute the following Set-PSDebug cmdlet with Step as a parameter, as shown here (see Figure 3-38):

Set-PSDebug –Step
$myvar=100
$myvar+20

71

Chapter 3: Programming, Scripting, Error Handling, and Debugging

Now, any cmdlet executed after this will be prompted by the PSDebug cmdlet with Yes/No/Suspend, as
shown in Figure 3-38.

Figure 3-38

PSDebug can be turned off by using Set-PSDebug with -Off as a parameter:

Set-PSDebug -Off

Now execute the calculate-arith2.ps1 script with PSDebug turned on:

Set-PSDebug -Step
.\calculate-arith2.ps1 4 + 5

As shown in Figure 3-39, PSDebug prompts for confirmation at every line in the script. You use ‘‘A’’ to
pass ‘‘Yes’’ for all the prompts.

Figure 3-39

You can also debug the scripts and cmdlets using set-PSDebug with trace as a parameter.

When PSDebug is executed with trace as a parameter, instead of stepping through line by line, it executes
the whole script and generates the trace.

Execute calculate-arith2.ps1 with Set-PSDebug and the parameter Trace.

Set-PSDebug -Off

72

Chapter 3: Programming, Scripting, Error Handling, and Debugging

Set-PSDebug -Trace 2
.\calculate-arith2.ps1 4 + 5

As shown in Figure 3-40, PowerShell displays the debug information line by line.

Figure 3-40

Trace accepts three different parameter values:

Trace Parameter Value Meaning

0 No debugging

1 Trace script lines

2 Trace script lines, variable assignments, function calls, and scripts

You can also use the Write-Debug cmdlet in the code, which will be executed only in debug mode.

For example, create the following script, calculate-arith4.ps1:

==
#
NAME: calculate-arith4.ps1
#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: Demo for "Write-Debug"
#
==
param (

[int] $a,
[string] $c,
[int] $b

)
write-debug "Getting parameters"
write-debug "Parameter 1 is $a"
write-debug "Parameter 2 is $c"
write-debug "Parameter 3 is $b"

write-debug "Checking parameter 2"
Switch ($c){

73

Chapter 3: Programming, Scripting, Error Handling, and Debugging

+ {$a+$b}
− {$a-$b}
* {$a*$b}
/ {$a/$b}
% {$a%$b}
default {write-host "Invalid arithmetic operator" $a $c $b}
}

With Set-PSDebug –Off, execute the following calculate-arith4.ps1 script as shown here (see
Figure 3-41):

Set-PSDebug -Off
.\calculate-arith4.ps1 4 + 5

Figure 3-41

From the output, it is clear that Write-Debug did nothing when the script is executed.

Now execute the same script with Set-PSDebug –step. You can see all the statements that you wrote with
the Write-Debug cmdlet in Figure 3-42.

Set-PSDebug –Off

Set-PSDebug –Step
.\calculate-arith4.ps1 4 + 5

Figure 3-42

74

Chapter 3: Programming, Scripting, Error Handling, and Debugging

The behavior of the Write-Debug cmdlet can also be controlled by the preference variable
$DebugPreference. The default value of this variable is SilentlyContinue, i.e., debug messages
are not displayed. However, you can change its value to "Continue", which displays debug messages
and continues with execution. Run the following commands (see Figure 3-43):

Set-PSDebug –Off
$DebugPreference
$DebugPreference="Continue"
.\calculate-arith4.ps1 4 + 5

Figure 3-43

As shown in Figure 3-43, after the value of $DebugPreference changes from SilentlyContinue to
Continue, the debug messages from the calculate-arith4.ps1 script are printed out along with the
result.

Summary
This chapter illustrated various input and output methods, along with various programming elements
such as variables, expressions, operators, and loop constructs, in Windows PowerShell. It also illustrated
the various error-handling and debugging methods both inside PowerShell’s interactive mode and inside
the scripts.

The next chapter continues to explore the programming side of subroutines, user profiles, and the sourc-
ing of scripts and functions.

75

Windows PowerShell
Functions, Parameters,

Sourcing , Scopes, and User
Profile

In any programming language, code reusability is both common and important. It increases produc-
tivity and decreases the need to write redundant code blocks. Another important basic functionality
in any programming language is the scope of variables and functions.

This chapter focuses on the reusability of PowerShell scripting. You will learn how to reuse code
blocks through functions, sourcing files, and user profiles. You will also be introduced to variable
scopes and function scopes. Finally, this chapter also covers transcripts.

Functions
Functions are modules or blocks of code that can be reused repeatedly in programming by just
calling the block of code by name. Creating functions reduces the writing of redundant code
and increases productivity. Functions can be written inside the main script or can be sourced in
from a file.

The following code creates a simple function that displays a welcome message to the user:

function Hello
{
write-host "Welcome to PowerSQL"
}

Chapter 4: Functions, Parameters, Sourcing, Scopes, and User Profile

You can call the function by just typing ‘‘Hello,’’ as shown in Figure 4-1. This function has no return
value or parameters.

Figure 4-1

Arguments in Functions
Functions accept arguments or parameters if you define them in the function. There are two ways
to define arguments. One is using the argument variable args. This is the array variable in which
each element represents one argument.

Arguments and parameters refer to the same thing.

The following example creates a function that accepts two arguments using the args variable. Here
the parameters are not predefined. The function basically accepts all arguments passed and makes
use of only the first two. The arguments are stored in an array and $args[0]represents argument 1,
$args[1] represents argument 2, and so on.

Function ConcatName
{
[string] $args[0] + [string] $args[1]
}

This function can be executed as shown here:

ConcatName "Sam" "Rooban" "Test"

This passes three string arguments. The function accepts all the arguments "Sam", "Rooban", and
"Test", and concatenates only the first two, displaying them as shown in Figure 4-2.

Figure 4-2

78

Chapter 4: Functions, Parameters, Sourcing, Scopes, and User Profile

The arguments of the same function ConcatName can be defined in a different way, as shown
next. In the following example, the arguments are predefined and assigned to the string variables
$Firstname and $Lastname, respectively:

Function ConcatName ([string] $Firstname ,[string] $Lastname)
{
$Firstname + $LastName
}

This function can also be called like this (see Figure 4-3):

ConcatName "Sam" "Rooban"

Here we are passing two string arguments. The function accepts the two arguments "Sam" and
"Rooban" and assigns that to the variables $FirstName and $LastName and then concatenates the
two variables, displaying them as shown in Figure 4-3.

Figure 4-3

An arguments can be created as a switch. The difference between a parameter and a switch is that a
switch does not take a value, whereas a parameter can. A switch is typically used like a flag or an
ON/OFF switch.

Now create the following ConcatName function with three parameters, with one as a switch. When-
ever the switch is used when calling the function, it will display the usage information:

Function ConcatName ([string] $x ,[string] $y, [switch] $help)
{
if ($help)
{
write-host "Usage: Concatename ‘Firstname’ ‘Lastname’"
}
else
{
Write-host xy
}
}

As shown in Figure 4-4, when executing the function with the -help parameter, it just displays
the usage information of the function. If you don’t use the -help parameter, it will display the
concatenation of the two string values that are passed as parameters.

79

Chapter 4: Functions, Parameters, Sourcing, Scopes, and User Profile

Figure 4-4

Returning Values
Typically, a function should return values so that the calling program can manipulate or make use
of the returned values.

The following example creates a compute function that can add, delete, multiply, or divide based
on the parameter. Then it returns the computed value to the calling script. Create this in a Power-
Shell script calculate-arith1.ps1, and save the script file under the directory C:\DBAScripts.
The script passes 1, +, and 20 to the function, The function adds 1 to 20 and passes the result 21
back to the script, and then the script prints out 21:

==
#
NAME: calculate-arith1.ps1
#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: Demo for "Return value"
#
==
Function compute([int] $x ,[string] $y, [int] $z)
{
switch ($y)
{
"+" { $computed=$x+$z }
"-" { $computed=$x-$z }
"/" { $computed=$x/$z }
"*" { $computed=$x*$z }
"%" { $computed=$x%$z }
}
return $computed
}

$a=compute 1 "+" 20

write-host $a

80

Chapter 4: Functions, Parameters, Sourcing, Scopes, and User Profile

Now execute the calculate-arith1.ps1 script as shown here (see Figure 4-5):

.\calculate-arith1.ps1

Figure 4-5

Script Parameters
Arguments or parameters can also be used in scripts. Scripts accept arguments or parameters if you
define them inside the script. There are two ways to define arguments. One is using the argument variable
args. This is the array variable in which each element represents one argument.

You can create a script that accepts two arguments using the args variable. Here the parameters are not
predefined. It basically accepts all arguments passed and makes use of only the first two. The arguments
are stored in an array; $args[0]represents argument 1, $args[1]represents argument 2, and so on:

==
#
NAME: Test-Args1.ps1
#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: Demo for arguments in script that are not
pre-defined.
==

write-host $args[0]
write-host $args[1]

Try to execute the script with no parameters and then with the two parameters shown here:

.\Test-Args1.ps1

.\Test-Args1.ps1 MyPparam1 MyParam2

You can see that when the script Test-Args1 is executed without parameters, the $ARGS[0]and
$ARGS[0]are empty and do not display any values. However, when executed with the parameters
MyParam1 and MyParam2, it displays the parameter values, as shown in Figure 4-6.

The next example creates a script that accepts two arguments. Here the parameters are predefined, and
the values are stored in the variables $firstname and $lastname:

==
#
NAME: Test-Args2.ps1
#

81

Chapter 4: Functions, Parameters, Sourcing, Scopes, and User Profile

AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: Demo for arguments in script that are
pre-defined.
==
param
(
[String] $firstname,
[String] $Lastname

)
write-host "First Name is " $firstname
write-host "Last Name is " $lastname

Now try to execute the script with no parameters and then with two parameters:

.\Test-Args2.ps1 Adam Smith

.\Test-Args2.ps1 Adam

.\Test-Args2.ps1 Smith

Figure 4-6

In Figure 4-7, you can see that when the script Test-Args2 is executed with the parameter values Adam or
Smith or Adam and Smith, it accepts the argument values and stores that to $firstname and $lastname
and displays them. However, when passed only one parameter value, it always passes to the first param-
eter variable $firstname.

Figure 4-7

In order to ensure that the first parameter value is passed to the first parameter variable $firstname
and the second parameter value is passed to the second parameter variable $lastname, you can use the
parameter name and parameter value.

82

Chapter 4: Functions, Parameters, Sourcing, Scopes, and User Profile

The same script Test-args2.ps1 can be used for this. The following code executes the script with param-
eter name and parameter value:

.\Test-Args2.ps1 -FirstName Adam -LastName Smith

.\Test-Args2.ps1 -FirstName Adam

.\Test-Args2.ps1 -LastName Smith

As shown in Figure 4-8, when the parameter name is used, the parameter value is passed on to the right
parameter variable.

Figure 4-8

Just as you can with functions, you can also create a parameter variable with a switch as an option. The
behavior of the switch parameter is exactly the same as in a function.

Next, create a script Test-args3.ps1 with a couple of switch parameters, as shown here:

==
#
NAME: Test-Args3.ps1
#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: Demo for arguments in script that are
pre-defined switch.
==
param
(
[String] $firstname,
[String] $lastname,
[switch] $help,
[switch] $version

)

$versionval=1.0
if ($help)
{
write-host "Usage: .\Test-Args3.ps1 Firstname LastName"
}

83

Chapter 4: Functions, Parameters, Sourcing, Scopes, and User Profile

if ($version)
{
write-host "Version number of Test-Args3.ps1 is $versionval"
}

write-host "First Name is " $firstname
write-host "Last Name is " $lastname

Now execute the script with the parameter name and parameter value and switches as shown here:

.\Test-Args3.ps1 -FirstName Adam -LastName Smith

.\Test-Args3.ps1 -FirstName Adam -Help

.\Test-Args3.ps1 -LastName Smith -Help -Version

As shown in Figure 4-9, when a switch is used while executing the script, it displays the information
provided inside the if block.

Figure 4-9

Sourcing
When all the related functions are put together in a file, the file can be sourced into the current Windows
PowerShell environment or any script so that they will all be available.

Create a script file Mymodule.ps1 under the C:\DBAScripts directory with the following three functions
in it:

==
#
NAME: MyModule.ps1
#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: Demo for Sourcing all the functions
defined in this file
==
function Hello

84

Chapter 4: Functions, Parameters, Sourcing, Scopes, and User Profile

{
write-host "Welcome to PowerSQL"
}

Function ConcatName
{
[string] $args[0] + [string] $args[1]
}

Function compute([int] $x ,[string] $y, [int] $z)
{
switch ($y)
{
"+" { $computed=$x+$z }
"-" { $computed=$x-$z }
"/" { $computed=$x/$z }
"*" { $computed=$x*$z }
"%" { $computed=$x%$z }
}
return $computed
}

Now source the module so that it will be available for the session and then try to call all the functions.

Sourcing can be done by using . script’s file path as shown here (see Figure 4-10):

. .\mymodule.ps1
Concatname "Sam" "Rooban"
Hello
Compute 5 * 20

Once Mymodule.ps1 is sourced, all the functions that define the Mymodule.ps1 become available in the
current session. All the functions can be used.

Figure 4-10

Variable Scope
PowerShell offers scope when defining variables. There are three variable scopes. Global scope is the scope
of the current Windows PowerShell instance. Variables defined in this scope are visible to all the cmdlets,

85

Chapter 4: Functions, Parameters, Sourcing, Scopes, and User Profile

scripts, and functions executed in the Windows PowerShell instance. Local scope is the current scope. A
new local scope is created whenever you run a function, script, or start a new instance of the Windows
PowerShell. Script scope is created when the script is started, and removed when the script is completed.
Variables in script scope are visible only when the script is running.

By default, a variable is created in the local scope. When a variable is accessed, it is also searched from
the local scope. If it is there, you can use it; if it is not there, look at the parent’s scope (and upward until
you find the variable or reach to the global scope).

You can create a small script Myscope.ps1 under C:\DBAScripts as shown here:

==
#
NAME: MyScope.ps1
#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: Demo for variable scope
#
==
$myvar=1 # This variable is created in the scope of myscope.ps1.
write-host "Myvar defined as $myvar"

function myfunction
{
write-host "Myvar inside the myfunction is $myvar"
write-host "Updating myvar inside the myfunction... "
$myvar=2 # This variable is created in the scope of myfunction, a child scope of the
myscope.ps1 script scope.
write-host "Value of myvar after being updating inside myfunction is $myvar "
}
write-host "Calling myfunction"
myfunction

write-host "Value of myvar after calling the function is $myvar"

Define a global variable $myvar in Windows PowerShell:

$myvar=100

Now execute the myscope.ps1 script as shown here:

.\myscope.ps1
$myvar

As shown in Figure 4-11, the Myscope.ps1 script first calls the myvar variable, and its value is 1 in that
scope. Then the variable is overridden with a value of 2 in the myfunction function inside the script.
After exiting the function, the value of the variable changes back to 1 because the current scope changed
back to the script scope. After exiting the function, you are in the global scope. PowerShell maintained a
value of 100 for the variable in the global scope.

86

Chapter 4: Functions, Parameters, Sourcing, Scopes, and User Profile

Figure 4-11

A variable can be read by the scope where it was created, and the child scopes of that scope. It can
be changed in its scope, or the child scopes, by explicitly referring to it using a script label. Windows
PowerShell provides three labels for identifying the scope of a variable: local, global, and script. To
refer to a variable in another scope, place the scope label before the variable name, separating them by a
colon (:) — for example, $global:myvar, $local:myvar, $myscript:myvar, and $myfunction:myvar.

Note that a variable cannot be read or changed in the parent scope of the scope where it was created.

Function Scope
Similar to the variable scope described in the previous section, scope is available for functions as well. If
you declare a function, it is available only within the scope in which you declared it and any child scopes.
The scope of the function can be illustrated by the following example.

Create Functionscope.ps1 as shown in the following example. In the script, the function innerfunction
is defined in the scope of the outerfunction.

==
#
NAME: FunctionScope.ps1
#
AUTHOR: Yan and MAK
DATE : 4/26/2008
#
COMMENT: Demo for Function scope
#
==

function outerfunction
{

function innerfunction
{

write-host "Inside the innerfunction..."
}

Write-Host "Calling innerfunction inside outerfunction..."
innerfunction
}

87

Chapter 4: Functions, Parameters, Sourcing, Scopes, and User Profile

outerfunction
Write-Host "Trying to call innerfunction outside outerfunction..."
innerfunction

Execute the functionscope.ps1 as shown here:

.\FunctionScope.ps1

From the output shown in Figure 4-12, you can see that innerfunction is out of scope and not recognized
when called outside the outerfunction function.

Figure 4-12

Note also that the global variable can be accessed and updated anywhere in the script. The local variable
with the same name as its parent scope, however, is always overridden in the local scope.

More information on variables and scopes is provided in Chapter 5 when we discuss the variable drive.

User Profile
To reuse a function, you can source in the script file that contains the function, as shown earlier. However,
you can also put the function in your profile. A profile is a script that runs automatically when Windows
PowerShell starts up. It can contain functions, variables, and aliases so that every time Windows Power-
Shell starts, the functions, variables, and aliases are loaded into the new session automatically.

Four different profiles are available in Windows PowerShell, as listed in the following load order. If there
is any conflict between these files, the commands in the more specific profile, which is loaded later, take
precedence.

❑ %windir%\system32\WindowsPowerShell\v2.0\profile.ps1

This profile applies to all users and all shells.

❑ %windir%\system32\WindowsPowerShell\v2.0\Microsoft.PowerShell_profile.ps1

This profile applies to all users, but only to the Microsoft.PowerShell shell. For example, the
Microsoft SQL Server PowerShell shell that the SQLPS utility starts is not a default Microsoft.
PowerShell shell (we discuss it in Chapter 11). Therefore, this profile doesn’t apply to it.

❑ %UserProfile%\My Documents\WindowsPowerShell\profile.ps1 or %UserProfile%
\Documents\WindowsPowerShell\profile.ps1 on Windows Vista and Windows Server 2008.

This profile applies only to the current user but affects all shells.

88

Chapter 4: Functions, Parameters, Sourcing, Scopes, and User Profile

❑ %UserProfile%\My Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1 or
%UserProfile%\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1 on
Windows Vista and Windows Server 2008.

This profile applies only to the current user and the Microsoft.PowerShell shell.

An administrator can set up profiles that are run for all users by using the first two profile files in the
folder %windir%\System32\WindowsPowerShell\v2.0. Aliases, functions, and variables defined in the
two files, if present, are used for all users of that machine.

For the current user, to ensure that no conflicts between profile files would overwrite a function you want
to use, it makes sense to put the function in the user-specific and shell-specific profile file. The path of this
file is actually stored in the built-in variable $profile. To determine if this profile already exists, enter
the following:

test-path $profile

If the profile exists, the command returns True. Otherwise, you need to create the profile file using the
following command (see Figure 4-13):

new-item -path $profile -type file –force

Figure 4-13

After the profile specified in the $profile variable has been created, you can enter aliases, functions, and
scripts in the profile to customize your shell. For example, if you want to reuse all the functions defined
earlier in the Mymodule.ps1 script, you can copy the content of the script to the profile by running the
following command (see Figure 4-14). The Get-Content and Set-Content cmdlets are covered in detail
in Chapter 5.

Get-Content C:\DBAScripts\mymodule.ps1 | Set-Content $profile
Get-Content $profile

After you set up the profile file, open a new shell and try to call the functions defined in the profile (see
Figure 4-15):

Concatname "Sam" "Rooban"
Hello
Compute 5 * 20

As you can see, the preceding three functions are loaded to the shell automatically.

89

Chapter 4: Functions, Parameters, Sourcing, Scopes, and User Profile

Figure 4-14

Figure 4-15

Transcripts
PowerShell also provides a feature that records everything that happens during the PowerShell session.
This can be turned on and off by using the following Start-Transcript and Stop-transcript cmdlets.

Start the transcript with the execute few cmdlets, functions, and scripts shown here:

Start-transcript -path C:\MyPsTranscripts.txt
Hello
Concatname "Sam" "Rooban"
./test-args3.ps1 -Firstname Sam -LastName Rooban

Figure 4-16 shows that the transcript started and began, recording all the cmdlets, functions, and scripts
in the PowerShell session.

You can open the C:\MyPsTranscripts.txt file using Notepad and see all the recordings (see
Figure 4-17).

90

Chapter 4: Functions, Parameters, Sourcing, Scopes, and User Profile

Figure 4-16

Figure 4-17

Use the following Stop-Transcript cmdlet to stop the transcript:

Stop-Transcript

You can enable and disable transcripts in every script you create, recording each and every cmdlet,
expression, and different construct used in the script to a file, and stopping the recording at the end of
the script.

Summary
This chapter covered how to create functions and function arguments, defining parameters in scripts,
and sourcing a script file. It also demonstrated the various scopes related to variables and functions and
explained the use of profiles and transcripts.

This chapter and the previous chapter illustrated the various programming functionalities in Windows
PowerShell. The next chapter describes how to work with the system registry, file system, environment
variables, and more.

91

Working with the File
System, Registr y, and

Variables

One of the most powerful features of Windows PowerShell is the ability to navigate through many
different data stores in a consistent manner. In addition to the familiar file system drives, such
as C: and D:, Windows PowerShell includes drives that represent the registry hives, variables,
aliases, environment variables, functions, certificates, and more. This chapter demonstrates how
to work with four drives: the File System drive, the Registry drive, the Variable drive, and the
Environment drive.

More specifically, this chapter covers the following topics:

❑ Using Get-PSDrive and Get-PSProvider to retrieve Windows PowerShell drives and
providers

❑ Working with the file system

❑ Working with the registry

❑ Working with variables

❑ Working with environment variables

Using Get-PSDrive and Get-PSProvider
You can use the cmdlet Get-PSDrive to obtain a list of all Windows PowerShell drives. Run the
following command at the Windows PowerShell prompt:

Get-PSDrive | Format-Table –auto

Chapter 5: Working with the File System, Registry, and Variables

Figure 5-1 shows the list of drives on a default installation of Windows PowerShell. In this example,
all of the following are on the local machine: one alias drive, which contains aliases for commands; one
certificate drive, cert:, which contains digital signature certificates; three file system drives, C:, D: and
E:; one environment drive, Env:, which contains environmental variables; one function drive, Function:,
which contains functions declared in PowerShell; two registry drives, HKCU: and HKLM:; one variable
drive, Variable:, which contains variables declared in Windows PowerShell; and one WSMan: drive that
contains Windows Remote Management configurations.

The Windows PowerShell providers, shown in the second column of Figure 5-1, provide the Windows
PowerShell drives to the Windows PowerShell console. These providers are .NET assemblies that make
the data in a specialized data store available in Windows PowerShell in a format that resembles file
system drives.

Figure 5-1

You can use the Get-PSProvider cmdlet to obtain a list of all the providers:

Get-PSProvider

Figure 5-2 shows how the cmdlet prints out a list of providers. Again, these are the providers listed in
the second column of Figure 5-1.

Figure 5-2

The associated drives that each of the providers expose are shown in the third column of the output.
These providers are installed in Windows PowerShell by default. You can write your own provider

94

Chapter 5: Working with the File System, Registry, and Variables

in .NET to surface data stores specific to your own product or database, and add the drives by using the
New-PSDrive command.

Working with File System
As shown in the preceding section, file system drives are Windows PowerShell drives that are made
available through the FileSystem provider. In order to get a list of file system drives, you can execute
the following command:

Get-PSDrive -pSProvider FileSystem | Format-Table –auto

The output is shown in Figure 5-3. However, the information you can get from Get-PSDrive is limited.
You can only see the drive name and your current location — that’s about it.

Figure 5-3

Let’s say you want to view the amount of free space on each logical drive. Unfortunately, the
drive objects returned by Get-PSDrive won’t get it for you. This is where Windows Management
Instrumentation (WMI) comes into play. WMI is the infrastructure for managing data and operations
on Windows-based operating systems. WMI is available on all Windows operating systems since
Windows NT 4.0 (long before Windows PowerShell was introduced). WMI is described in more detail in
Chapter 8.

The Get-WmiObject cmdlet is used to make a connection into the WMI. It creates instances of WMI
classes. The Win32 LogicalDisk WMI class represents all local storage devices on a computer system.
The DriveType property of this class represents the type of disk drive. A value of 3 corresponds to a
local disk. You will first create an instance of the Win32 LogicalDisk WMI class. Then you’ll use the
Select-Object cmdlet to get the name and free space of each local drive. The complete command is
shown here:

Get-WmiObject -class Win32_LogicalDisk -filter "DriveType=3" | Select-Object
DeviceID, FreeSpace | Format-Table –auto

The output is shown in Figure 5-4. The FreeSpace shown is in bytes. As you can see, the C: drive has
22334136320 bytes free. Because this is such a large value it is a little hard to read. You can convert the
bytes to GB for easy viewing by running the following command:

Get-WmiObject -class Win32_LogicalDisk -filter "DriveType=3" | ForEach-Object
-Process {Write-Host $_.DeviceID "has" ($_.FreeSpace/1GB) "GB free"}

95

Chapter 5: Working with the File System, Registry, and Variables

Figure 5-4

As shown in Figure 5-5, drive C: has 20GB free, and drive D: has 45GB free.

Figure 5-5

Navigating the File System
After you have the list of file system drives, you can navigate through them for files and directories. In
Windows PowerShell, the working directory, or the current directory you are in, is called location. As in
command-line interfaces such as Cmd.exe, you can refer to all the objects under the current location using
a relative path. Alternately, you can refer to them using an absolute path from the root of the file system
drive.

The core cmdlets you can use to change the current location are listed in Table 5-1.

Table 5-1: cmdlets to Change Location

cmdlet Name Alias Description

Set-Location sl, cd, chdir Sets the current working location to a specified location

Get-Location gl, pwd Gets information about the current working location

Push-Location Pushd Pushes the current location onto the stack that contains the ordered
history of locations where you have been

Pop-Location Popd Changes the current location to the location most recently pushed
onto the stack

The Set-Location command enables you to specify the current location. Suppose you are in the root of
the C: drive. The following command changes the current location to C:\Windows:

Set-Location -Path C:\Windows

96

Chapter 5: Working with the File System, Registry, and Variables

After you enter the command, you will notice the PowerShell prompt changes to C:\Windows, as shown
in Figure 5-6.

Figure 5-6

However, if you want direct feedback from the command, you can include the –passThru parameter in
the command. The –Path parameter immediately following Set-Location can be omitted because it is a
positional parameter in position 1. You can simply provide the path value in position 1.

Set-Location C:\Windows –passThru

The new directory C:\Windows is returned, as shown in Figure 5-7.

Figure 5-7

You can specify paths relative to the current location in the same way as you would in Windows com-
mand shells. A period (.) represents the current directory, and a double period (..) represents the parent
directory of the current location. For example, you can change from the current location C:\Windows to
its parent, the root of the C: drive, as shown here and in Figure 5-8:

Set-Location ..

Figure 5-8

You can verify the current location from the command prompt or by entering the Get-Location cmdlet,
as shown in Figure 5-9. The Get-Location cmdlet retrieves the current working location:

Get-Location

97

Chapter 5: Working with the File System, Registry, and Variables

Figure 5-9

It is helpful to be able to keep track of where you have been and return to previous locations. The
Push-Location cmdlet in Windows PowerShell pushes the current location onto a stack that contains
an ordered history of locations you have been, and enables you to return using the Pop-Location cmdlet.

To push the current location onto the stack and then move to the Program Files\Microsoft SQL Server
directory, run the following command:

Push-Location –Path "C:\Program Files\Microsoft SQL Server"

Notice that the current location changes to C:\Program Files\Microsoft SQL Server in Figure 5-10.

Figure 5-10

You can then return to the root directory of the C: drive by entering the Pop-Location command:

Pop-Location

Notice that the current location changes back to C:\ in Figure 5-11.

Figure 5-11

Managing Files and Directories
After you navigate the file system, you may want to manage the files and directories, such as creating
a new file, writing to a file, deleting an existing directory, and so on. The core cmdlets you can use to
manage files and directories are listed in Table 5-2.

98

Chapter 5: Working with the File System, Registry, and Variables

Table 5-2: cmdlets to Manage Files and Directories

cmdlet Name Alias Description

Get-ChildItem gci Gets the items and child items in one or more specified locations

New-Item ni Creates a new file or directory

Copy-Item cpi, copy Copies files

Remove-Item ri, del, rd Removes files or directories

Move-Item mi, move Moves a file

Rename-Item rni, rn Renames a file

To obtain a directory listing of the C:\ drive, use the Get-ChildItem cmdlet:

Get-ChildItem C:\

This cmdlet returns all the files and directories under C:\, as shown in Figure 5-12.

Figure 5-12

To get the methods and properties associated with the objects, use the Get-Member cmdlet:

Get-ChildItem | Get-Member

99

Chapter 5: Working with the File System, Registry, and Variables

As shown in Figure 5-13, the available methods for directory and file objects are listed separately.

Figure 5-13

If you want to get a list of only the directories, you can use the Where-Object cmdlet to filter the objects
whose PSIsContainer NoteProperty returns true because only directory objects are containers (the
output is shown in Figure 5-14):

Get-ChildItem | Where-Object {$_.PSIsContainer}

If you want to view only the directory names, you can use the Select-Object cmdlet to select only the
Name property of the directory objects (the output is shown in Figure 5-15):

Get-ChildItem | Where-Object {$_.psIsContainer} | Select-Object Name

The Get-ChildItem command also accepts wildcards in the path of the items to list. The Windows Power-
Shell wildcard notation includes the following:

❑ Asterisk (*): Matches zero or more occurrences of any character

100

Chapter 5: Working with the File System, Registry, and Variables

Figure 5-14

Figure 5-15

❑ Question mark (?): Matches exactly one character

❑ Left bracket ([) and right bracket (]): Surround a set of characters to be matched

For example, if you want to view a list of available assemblies only under the .NET Framework v3.5
directory, run the following command:

Get-ChildItem C:\Windows\Microsoft.NET\Framework\v3.5*.dll

Figure 5-16 shows the assemblies under the directory.

The New-Item cmdlet enables you to create a file or directory. Use the -Type parameter to tell Windows
PowerShell that the new item will be a file or directory. For example, the following command creates a
new directory called psDir under the root directory of the C: drive, and then creates a new file, psFile.txt,
under the new directory, C:\psDir. The output is shown in Figure 5-17.

New-Item –Path C:\ -Name psDir -Type directory

101

Chapter 5: Working with the File System, Registry, and Variables

Figure 5-16

Figure 5-17

You can omit the optional –Path parameter when creating the new file psFile.txt because it is a posi-
tional parameter in position 1. Simply provide the path value in position 1. The output is shown in
Figure 5-18.

New-Item C:\psDir -Name psFile.txt -Type file

Figure 5-18

The Copy-Item cmdlet enables you to copy a file or directory from one location to another. However,
unlike Windows command shells, Copy-Item does not copy the files and subfolders contained in a direc-
tory by default.

For example, if you try to copy the psDir directory you just created from the root of the C: drive to
the C:\Windows\Temp directory, the command will succeed, but the psFile.txt file you created under
C:\psDir directory will not be copied:

Set-Location C:\psdir
Copy-Item C:\psDir C:\Windows\Temp

102

Chapter 5: Working with the File System, Registry, and Variables

Get-ChildItem C:\Windows\Temp
Get-ChildItem C:\Windows\Temp\psDir

Notice that only the psDir directory is copied in Figure 5-19.

Figure 5-19

To copy the contents of a folder, include the recurse parameter of the Copy-Item cmdlet in the command.
If you have already copied the directory without its contents, add the force parameter, which enables
you to overwrite the empty folder, as shown in Figure 5-20.

Copy-Item C:\psDir C:\Windows\Temp –recurse -force
Get-ChildItem C:\Windows\Temp
Get-ChildItem C:\Windows\Temp\psDir

Figure 5-20

103

Chapter 5: Working with the File System, Registry, and Variables

To remove files or directories, use the Remove-Item cmdlet. Unlike the New-Item cmdlet, Windows
PowerShell does not provide different type parameters for removing directories and files.

In the next example, run the following commands to remove the psFile.txt file under C:\psDir, and
then the empty psDir directory.

Set-Location C:\
Remove-Item C:\psDir\psFile.txt
Remove-Item C:\psDir
Get-ChildItem C:\

Figure 5-21 shows that the psFile.txt was removed first, followed by the C:\psDir directory.

Figure 5-21

If you want to delete the C:\Windows\Temp\psDir directory that you copied earlier from C:\psDir, with
everything it contains in one shot, simply specify the -recurse parameter:

Remove-Item C:\Windows\Temp\psDir -recurse

If you try to delete the C:\Windows\Temp\psDir directory without the –recurse parameter, Windows
PowerShell prompts you to confirm the deletion because the directory is non-empty. The output is shown
in Figure 5-22.

Remove-Item C:\Windows\Temp\psDir

You need to select Y (Yes) or A (Yes to All) to delete the directory and everything in it.

104

Chapter 5: Working with the File System, Registry, and Variables

Figure 5-22

To move a file or folder, use the Move-Item cmdlet. The following commands create a directory C:\psDir
(this directory was removed in previous examples), and then move the psDir directory from the C:\
directory to the root of the C:\ Windows\Temp directory. The output is shown in Figure 5-23.

New-Item –Path C:\ -Name psDir -Type directory
Move-Item -Path C:\psDir -Destination C:\Windows\Temp
Get-ChildItem C:\Windows\Temp

Figure 5-23

To change the name of a file or folder, use the Rename-Item cmdlet. The following command creates a
new file, psFile.txt, in the C:\psDir directory and then changes the name of the file from psFile.txt
to rnFile.txt. The output is shown in Figure 5-24.

New-Item C:\Windows\Temp\psDir -Name psFile.txt -Type file
Rename-Item -Path C:\Windows\Temp\psDir\psFile.txt rnFile.txt
Get-ChildItem C:\Windows\Temp\psDir

105

Chapter 5: Working with the File System, Registry, and Variables

Figure 5-24

Managing File Contents
The previous sections explained how to manage the objects in the file system. This section examines how
to read and write a file. The core cmdlets you can use to manage file contents are listed in Table 5-3.

Table 5-3: cmdlets to Manage File Contents

cmdlet Name Alias Description

Set-Content Si Sets the contents of a file

Add-Content Sc Appends to the contents of a file

Get-Content gc, type Sends the contents of a file to the output stream

Clear-Content Cli Clears the contents of a file

To overwrite the contents of a file, use the Set-Content cmdlet. The following command overwrites the
contents of the rnFile.txt file you created earlier. The new content is specified by the -value argument.

Set-Content C:\Windows\Temp\psDir\rnFile.txt -Value "This is new content."

If you just want to append to the end of the rnFile.txt file but not overwrite the entire contents, use the
Add-Content cmdlet. The following command appends to the end of the rnFile.txt file:

Add-Content C:\Windows\Temp\psDir\rnFile.txt -Value "More content"

To read the contents of a file, use the Get-Content cmdlet:

Get-Content C:\Windows\Temp\psDir\rnfile.txt

106

Chapter 5: Working with the File System, Registry, and Variables

Notice that the contents of the rnFile.txt file includes what was written by Set-Content and
Add-Content in Figure 5-25.

Figure 5-25

Get-Content and Set-Content can also be used to merge files. Write a simple string to a new file called
file1.txt with the Set-Content cmdlet. Then write a simple string to another new file called file2.txt.
You can use the Get-Content cmdlet to retrieve the contents of the two files as a string object, and pipe
the object to the Set-Content cmdlet to write to a new file, file3.txt. The complete commands are as
follows:

Set-Location C:\Windows\Temp\psDir
Set-Content file1.txt -Value "File 1."
Set-Content file2.txt -Value "File 2."
Get-Content file1.txt,file2.txt | Set-Content file3.txt
Get-Content file3.txt

As shown in Figure 5-26, the Set-Content cmdlet actually created file1.txt, file2.txt, and
file3.txt. The file3.txt file contains the contents of both file1.txt and file2.txt.

Figure 5-26

To delete the contents of a file, such as its text, but not delete the item, use the Clear-Content cmdlet:

Clear-Content file3.txt
Get-Content file3.txt

Notice that the file3.txt file has been emptied in Figure 5-27.

Figure 5-27

107

Chapter 5: Working with the File System, Registry, and Variables

Working with the Registr y
This section looks at the registry drives. There are two built-in registry drives in Windows PowerShell:
HKCU and HKLM. They are made available through the Registry provider. You can execute the follow-
ing command to retrieve them:

Get-PSDrive -pSProvider Registry

Figure 5-28 shows the registry drives.

Figure 5-28

You can change the current location to a path under a registry drive using the Set-Location cmdlet, and
then get the keys under the registry path with the Get-ChildItem cmdlet. For example, the following
command sets the current location to the registry root of the default SQL Server 2008 instance on the
local computer, as shown in Figure 5-29.

Set-Location "HKLM:\SOFTWARE\Microsoft\Microsoft SQL Server\MSSQL10.MSSQLSERVER"

Figure 5-29

Once you are at the registry root of the default SQL Server 2008 instance, you can view all the subkeys
related to the default instance using the Get-ChildItem cmdlet:

Get-ChildItem

The subkeys are shown in Figure 5-30. The MSSQLServer subkey contains the configuration information
about the data engine, including registry values related to audit level, authentication mode, and so on.

Because Windows PowerShell considers a registry value a property of a key, you need to use the
Get-ItemProperty cmdlet to retrieve the registry values under MSSQL:

Get-ItemProperty MSSQLServer

As shown in Figure 5-31, the command returns only the registry values.

108

Chapter 5: Working with the File System, Registry, and Variables

Figure 5-30

Figure 5-31

The registry value AuditLevel controls the audit levels on SQL Server. The value 2 shown in the
figure means that only failed logins are audited on the default instance. If you want to audit all the
logins, including the successful ones, you need to change the value to 3 and bounce the instance. The
Set-ItemProperty cmdlet sets the registry value:

Set-ItemProperty -path MSSQLServer -name AuditLevel -value 3

To verify that the registry value has been changed, run the following command:

(Get-ItemProperty MSSQLServer).AuditLevel

109

Chapter 5: Working with the File System, Registry, and Variables

As shown in Figure 5-32, the registry value AuditLevel is now changed to 3.

Figure 5-32

Besides the registry values, the MSSQLServer registry key also has its own subkeys. To get the subkeys,
use the Get-ChildItem cmdlet:

Get-ChildItem –path MSSQLServer

As shown in Figure 5-33, the subkeys contain information related to the version of the SQL Server, the
FILESTREAM availability on the instance, the startup parameters, and server network configuration
settings.

Figure 5-33

To list all the registry values under these subkeys, run the following command:

Get-ChildItem MSSQLServer | ForEach-Object {Get-ItemProperty $_.PSPath | Select * }

The output is shown in Figure 5-34.

You can ignore the properties prefixed with ‘‘PS.’’ These are Windows PowerShell-related proper-
ties. For example, the CurrentVersion subkey has four values — RegisteredOwner, SerialNumber,
CurrentVersion, and Language — which provide useful information about the SQL Server instance.

The registry path can be very long, such as HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft
\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQLServer. As it is cumbersome to type such
long paths, you can create a custom Windows PowerShell drive that is rooted in that key by executing
the following command:

New-PSDrive -Name mssqlkey -PSProvider Registry -Root "HKLM\SOFTWARE\Microsoft
\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQLServer"

Get-ChildItem mssqlkey:

110

Chapter 5: Working with the File System, Registry, and Variables

Figure 5-34

As shown in Figure 5-35, you can then use the mssqlkey: drive to access the default instance registry key.

Working with Variables
The Variable: drive provides access to the variables created in Windows PowerShell. Windows Pow-
erShell includes a set of cmdlets designed specifically to view and change variables. They are listed in
Table 5-4.

When you use these particular cmdlets, you do not need to specify the Variable: drive. Windows Power-
Shell assumes that you are working with the Variable: drive.

You can also set the location or specify the path parameter to the Variable: drive, and work with the
variables in the same manner as you would with file system objects using the Item cmdlets: Get-Item,
New-Item, Set-Item, Remove-Item, and Clear-Item.

For example, you can get a list of variables available in the current shell by using one of three commands,
as shown in Figure 5-36. The first command is as follows:

Get-Variable

111

Chapter 5: Working with the File System, Registry, and Variables

Figure 5-35

Table 5-4: cmdlets to Manage Variables

cmdlet Name Alias Description

Get-Variable Gv Gets the variables in the current console

New-Variable Nv Creates a new variable

Set-Variable sv, set Sets the value of a variable. Creates the variable if one with the
requested name does not exist.

Remove-Variable Rv Deletes a variable and its value

Clear-Variable Clv Deletes the value of a variable

This is the second command you could use:

Set-Location Variable:
Get-ChildItem

Finally, the third command is as follows:

Get-ChildItem -Path Variable:

Obviously, the variable cmdlets are the easiest to use when working with variables. You will see more
examples of the cmdlets later in this section.

Three types of variables are available in Windows PowerShell: automatic, preference, and user-created.

112

Chapter 5: Working with the File System, Registry, and Variables

Figure 5-36

Automatic Variables
Automatic variables store the state information for Windows PowerShell. These variables are created
and populated automatically by Windows PowerShell to return information about the execution
environment. Users cannot change the value of these variables. If you try to overwrite an automatic
variable — for example, $PsHome, the variable containing the installation directory for Windows
PowerShell — you will get an error, as shown in Figure 5-37.

Set-Variable -name PsHome -value "C:\"

Figure 5-37

113

Chapter 5: Working with the File System, Registry, and Variables

The following list describes some of the automatic variables:

❑ $?: Contains the execution status of the last individual command or Windows PowerShell script.
It contains TRUE if last command or script succeeded, and FALSE if it failed.

❑ $_: Contains the current object in a pipelined script block. You can use this variable in commands
that perform an action on every object or on selected objects in a pipeline.

❑ $Error: Contains an array of error objects that represent the recent errors. The most recent error
is the first in the array ($error[0]).

❑ $False: Represents FALSE in commands and scripts.

❑ $ForEach: Contains the enumerator of a foreach-object loop. You can use the properties and
methods of enumerators on the value of $foreach. For example, the Current property returns
the current object in the loop, and the MoveNext()method moves to the next object.

The following examples show how the MoveNext()method moves the enumerator forward inside the
loop. When the loop starts, the $foreach enumerator points the first number 1. Inside the loop, the
MoveNext() method moves the enumerator to the second number 2, and 2 is returned by the Current
property. In the second iteration, 4 is printed. Then 6, 8, 10 are printed. Therefore, only even numbers are
printed out.

foreach ($i in 1..10)
{

[Void] $foreach.MoveNext()

$foreach.Current
}

Figure 5-38 shows the output.

Figure 5-38

❑ $Home: Contains the full path to the user’s home directory.

❑ $LastExitCode: Contains the exit code of the last native Windows program or Windows Power-
Shell script that was executed. This variable does not store the result of individual commands.

❑ $PID: Contains the process identifier of the Windows PowerShell process associated with the
current console or the current execution of a script. You can use $PID to distinguish among
executions of a script. For example, each time the script runs, you can create a unique log file
whose name ends with the $PID.

114

Chapter 5: Working with the File System, Registry, and Variables

❑ $Profile: Contains the full path to the user-specific profile for the default shell. It is equivalent
to %UserProfile%\My Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1
on Windows Server 2003 and XP, or %UserProfile%\Documents\WindowsPowerShell\
Microsoft.PowerShell_profile.ps1 on Windows Vista. You can use this variable to represent
the profile in commands, as described in Chapter 4.

❑ $PsHome: Contains the full path to the installation directory for Windows PowerShell.

❑ $pwd: Contains a path object that represents the current location.

❑ $True: Represents TRUE in commands and scripts.

Preference Variables
Preference variables store user preferences that control the behavior of debugging, verbosity, and errors.
These variables are created by Windows PowerShell and are populated with default values. Users can
change the value of a preference variable using the Set-Variable cmdlet or an assignment statement.
For example, you could use either:

Set-Variable -name MaximumHistoryCount -value (100)

Or the following:

$MaximumHistoryCount = 100

Here are some of the preference variables:

❑ $DebugPreference: Determines how the current shell responds to debugging messages gener-
ated by a script, cmdlet, or provider, such as the debug messages generated by the Write-Debug
cmdlet. The default value is SilentlyContinue, which suppresses the debug messages and con-
tinues with execution. Other possible values include Continue, Inquire, and Stop. They all
display the debug message, but Continue allows the shell to continue with execution, Inquire
asks the user whether execution should continue, and Stop stops execution.

❑ $ErrorActionPreference: This variable determines how the current shell responds to
nonterminating errors generated by a script, cmdlet, or provider, such as the errors generated
by the Write-Error cmdlet. It has the same four possible values as $DebugPreference. The
default value is Continue, which displays the error message and continues with execution.
SlientlyContinue suppresses the error message and continues with execution. Inquire
displays the error message and asks the user whether execution should continue. Stop displays
the error message and stops execution.

❑ $MaximumHistoryCount: Determines how many commands are saved in the command history
of the current session. Only the saved commands can be retrieved. By default, 64 commands
are saved. As mentioned earlier, you can change the number of commands saved using the
Set-Variable cmdlet or an assignment statement.

You can use the Get-History cmdlet to display the command history and then run a command
from the history list with the Invoke-History cmdlet (Figure 5-39 shows how to run the com-
mand of ID number 8):

Get-History
Invoke-History –id 8

115

Chapter 5: Working with the File System, Registry, and Variables

Figure 5-39

You can also use the up arrow key to retrieve the previous command, the down arrow key to
display the next command, F7 to display the command history, F8 to find the most recent com-
mand that begins with specific characters, and F9 to find a command by history ID.

❑ $WarningPreference: Determines how the current shell responds to warning messages
generated by a script, cmdlet or provider, such as the messages generated by the Write-Warning
cmdlet. It has the same four possible values as $DebugPreference. The default value is
Continue, which displays the error message and continues with execution. Other possible
values include SilentlyContinue, Inquire and Stop. SilentlyContinue suppresses the
warning message and continues with execution. Inquire displays the warning message and
asks the users if execution should continue. Stop displays the warning message and stop
execution.

❑ $WhatIfPreference: Determines whether WhatIf is automatically enabled for every cmdlet that
supports it. When the value of $WhatIfPreference is 1, WhatIf is enabled. When the cmdlet
runs, it only explains what will happen if it executes, instead of actually executing it. When the
value of $WhatIfPreference is 0, Whatif is disabled and the cmdlet executes. However, the
-WhatIf common parameter overrides this preference variable. You can use the -Whatif param-
eter of the cmdlet to enable/disable WhatIf regardless of how the $WhatIfPreference is set.

User-Created Variables
As the name suggests, users create user-created variables. By default, the variables that you create in the
Windows PowerShell command line exist only while the Windows PowerShell window is open and are
lost when you close the window. To save a variable, add it to the Windows PowerShell profile.

For example, to create a new System.DateTime variable that has the current date and time, you can use a
simple assignment statement:

$myVar = Get-Date
$myVar = Get-Date

You can also use the following New-Variable cmdlet:

New-Variable –name myVar –value (Get-Date)

Alternately, you use the New-Item cmdlet:

New-Item –Path Variable: -name myVar –value (Get-Date)

116

Chapter 5: Working with the File System, Registry, and Variables

What are the advantages of the New-Variable cmdlet versus the assignment and the New-Item cmdlet?
Let’s look at the syntax for the New-Variable cmdlet.

New-Variable: Creates a new variable

New-Variable [-name] <string> [[-value] <Object>] [-scope <string>] [-description
<string>] [-option {<None> | <ReadOnly> | <Constant> | <Private> | <AllScope>}]
[-force] [-passThru] [-whatIf] [-confirm] [<CommonParameters>]

As shown here, other than the name parameter that specifies the names of the variables to be changed,
some parameters are not available in the assignment or the New-Item cmdlet. The following list describes
them:

❑ -scope <string>: Determines the scope of the variable’s visibility. There are three variable
scopes: global, local, or script. Local is the default. Global scope is the scope of the current
Windows PowerShell instance. Variables defined in this scope are visible to all the cmdlets,
scripts, and functions executed in the Windows PowerShell instance. Local scope is the current
scope. A new local scope is created whenever you run a function or a script, or start a new
instance of Windows PowerShell. Script scope is created when the script is started, and removed
when the script is finished. Variables in the script scope are visible only when the script is
running. By default, a variable is created with local scope.

The value can be a number relative to the current scope (0 through the number of scopes, where
0 is the current scope, and increasing the number by 1 moves to the parent scope of the current
scope).

A variable can be read by the scope where it was created, and the child scopes of the scope where
it was created. It can only be changed in its scope, unless the child scopes explicitly refers to it
using a script label. It cannot be read or changed in the parent scopes of its scope.

❑ -description <string>: Describes the purpose of the variable.

❑ -option <ScopedItemOptions>: Provides optional properties of the variable. Possible values
include None, ReadOnly, Constant, Private and AllScope. ReadOnly defines a read-only vari-
able that cannot be deleted or changed without using the Force parameter in Remove-Variable,
Set-Variable or Clear-Variable. Constant defines a variable that cannot be deleted or
changed, even with the Force parameter. It can only be removed when the Windows PowerShell
instance exits. Constant is valid only when creating a new variable. Private makes the variable
visible only in the scope in which it was created, not even in the child scopes. AllScope copies
the variable to all scopes that are created. You don’t need to refer to the variable with a script
label.

❑ -passThru <SwitchParameter>: Passes the variable created by this cmdlet through the pipeline
and allows it to be further used.

The parameters of the New-Variable cmdlet provide you with more options to manage variables than
the simple assignment statement and the Item cmdlets. They enable you to define a variable in a scope
that is different from the local scope. They also enable you to define a read-only variable or a constant.
For example, you can define a read-only variable called rovar with a value of 1, and try to change its
value by running the following commands:

New-Variable rovar –value 1 –option ReadOnly
$rovar=10

117

Chapter 5: Working with the File System, Registry, and Variables

Figure 5-40 shows the read-only variable rovar is defined. The attempt to change its value fails.

Figure 5-40

Other variable cmdlets are also tailored for variables and provide more options. Let’s look at other vari-
able cmdlets and their parameters.

Get-Variable: Gets the variables

Get-Variable [[-name] <string[]>] [-include <string[]>] [-exclude <string[]>]
[-valueOnly] [-scope <string>] [<CommonParameters>]

Here we only list the parameters that are different from those in the New-Variable cmdlet:

-name <string[]>

Unlike the name parameter in the New-Variable cmdlet, this parameter accepts a string array contain-
ing variable names. Wildcards are also permitted. For example, the following command retrieves the
variables beginning with "Maximum", matching "PWD", and ending with "Preference":

Get-Variable -name ("Maximum*","PWD","*Preference")

The variables are shown in Figure 5-41.

Figure 5-41

118

Chapter 5: Working with the File System, Registry, and Variables

❑ -include <string[]>: Specifies only the items upon which the cmdlet will act, excluding all oth-
ers. A string array containing names is passed, and wildcards are permitted. If the same string
array is passed to this parameter and the –name parameter, the same set of variables will be
returned. The only difference is the order in which the variables are returned.

❑ -exclude <string[]>: Excludes the specified items. A string array containing names is passed,
and wildcards are permitted.

❑ -valueOnly <SwitchParameter>: Returns only the values of the variables.

You can filter the variables based on their optional properties. The following command uses the
Where-Object cmdlet to filter out read-only variables whose options are equal to ReadOnly:

Get-Variable | Where-Object {$_.options -eq ‘ReadOnly’}

As shown in Figure 5-42, the read-only variable rovar defined earlier was returned.

Figure 5-42

Set-Variable: Sets the value of variables or changes the properties of the
variables

Set-Variable [-name] <string[]> [[-value] <Object>] [-include <string[]>]
[-exclude <string[]>] [-scope <string>] [-description <string>] [-option {<None> |
<ReadOnly> | <Constant> | <Private> | <AllScope>}] [-force] [-passThru]
[-whatIf] [-confirm] [<CommonParameters>]

You have seen all the parameters in the New-Variable and Get-Variable cmdlets except the force
parameter. This parameter forces the cmdlet to make the best attempt at setting the variable. This param-
eter is needed to change the value of a read-only variable. However, it has no effect on a constant. For
example, to change the value of the read-only variable rovar that was defined earlier, run the following
command:

Set-Variable rovar -value 5 –force
$rovar

Figure 5-43 shows that the value of the read-only variable rovar is changed to 5.

Remove-Variable: Removes variables

Remove-Variable [-name] <string[]> [-include <string[]>] [-exclude <string[]>]
[-scope <string>] [-force] [-whatIf] [-confirm] [<CommonParameters>]

119

Chapter 5: Working with the File System, Registry, and Variables

Figure 5-43

You have seen all the parameters in other cmdlets. To remove the read-only variable defined earlier, you
need to use the -force parameter (see Figure 5-44):

Remove-Variable rovar -force

Figure 5-44

Clear-Variable: Deletes the value of variables andmakes the variables null

Clear-Variable [-name] <string[]> [-include <string[]>] [-exclude <string[]>]
[-scope <string>] [-force] [-passThru] [-whatIf] [-confirm] [<CommonParameters>]

These parameters are also available in other cmdlets. You can define a variable myVar and set its value to
"hello", then use the Clear-Variable cmdlet to delete its value and make it NULL:

New-Variable myVar -value "hello"
$myVar
Clear-Variable myVar
$myVar
$myVar -eq $NULL # Confirm that the myVar variable has been nulled.
Remove-Variable myVar #Tidy up

As shown in Figure 5-45, after the myVar variable is cleared by the Clear-Variable cmdlet, it is equal to
NULL.

Figure 5-45

120

Chapter 5: Working with the File System, Registry, and Variables

Working with Environment Variables
Besides the variables available through the Variable: drive, Windows environmental variables are also
available in Windows PowerShell through the Env: drive. To get a list of the environmental variables,
you can either change the current location to Env: and run Get-ChildItem, or you can specify the -Path
parameter to Env: in the Get-ChildItem cmdlet. The following example shows the former option:

Set-Location Env:
Get-ChildItem

Here is the latter option, as shown in Figure 5-46:

Get-ChildItem –Path Env:

Figure 5-46

You can use the Set-Item cmdlet to change the value of an environment variable. For example, you can
pre-append ‘‘C:\’’ to the Path environment variable. The following command gets the value of the -Path
variable, uses the Set-Item cmdlet to append ‘‘C:\’’ to the beginning of the value, and then confirms the
changed value:

(Get-Item Env:\Path).Value
Set-Item Env:\Path -Value ("C:\;" + (Get-Item Env:\Path).Value)
(Get-Item Env:\Path).Value

121

Chapter 5: Working with the File System, Registry, and Variables

The output is shown in Figure 5-47. Note that this change is effective only in the current PowerShell
window. If you need to change an environmental variable permanently, you need to use the SetX.exe
executable.

Figure 5-47

Summary
This chapter demonstrated how to use Windows PowerShell cmdlets to manage system resources, includ-
ing the file system, the registry, and environment variables. It also looked at the three types of variables
declared in Windows PowerShell: automatic, preference, and user-created, and their different purposes.
The next chapter discusses how to access event logs in PowerShell, and the various cmdlets related to
event log access and handling.

122

Working with Event Logs

Chapter 5 discussed features related to navigating through the many different data stores in a
consistent way. PowerShell also provides the functionality to access the event logs. This chapter
discusses the various cmdlets related to accessing and handling event logs. As you know, the
behaviors of hardware, software, and users on your system are recorded as events in the Win-
dows event logs. Therefore, the event logs provide very helpful insight into what is happening
on your system. For example, if your SQL Server doesn’t start automatically as expected, then the
Application event log would be the first place you want to look to troubleshoot the problem. How-
ever, the large volume of information contained in the event logs can sometimes make it difficult to
find the particular events you are interested in.

This chapter introduces you to the available event logs and the different types of information they
contain. It also shows you how to sift through the information more effectively with Windows
PowerShell.

This chapter covers the following topics:

❑ Event Log Service

❑ Event Viewer

❑ Event logs

❑ Log entry types

❑ Exporting the event logs

❑ PowerShell cmdlets related to event logs

Chapter 6: Working with Event Logs

Event Log Ser vice
The Windows Event Log service enables an application to publish, access, and process events. Events
are stored in event logs, which can be routinely checked by an administrator or monitoring tool to detect
certain occurrences or problems on a computer.

In Windows 2003 and Windows XP, the Event Log service uses services.exe (see Figure 6-1).

Figure 6-1

In Windows 2008 and Windows Vista, the Windows event log has been rewritten around a well-defined,
structured XML log format and designated log types in order to enable applications to more precisely
log events and make it easier for support technicians and developers to interpret the events. The XML
representation of the event can be viewed on the Details tab in an event’s properties. It is also possible to
view all potential events, their structure, registered event publishers, and their configurations using the
wevtutil utility, even before the events are fired.

Numerous types of event logs are available, including administrative, operational, analytic, and debug event
log types. Analytic and debug events of high frequency are directly saved into a trace file, while admin-
istrative and operational events are infrequent enough to allow additional processing without affecting
system performance, so they are delivered to the Event Log service. Events are published asynchronously
to reduce the performance impact on the event publishing application. Event attributes are also much
more detailed, and include EventID, Level, Task, Opcode, and Keywords properties.

Two main event subscribers include the Event Collector service and Task Scheduler 2.0. The Event Col-
lector service can automatically forward event logs to other remote systems running Windows Vista,
Windows Server 2008, or Windows Server 2003 R2 on a configurable schedule. Event logs can also be
remotely viewed from other computers, and multiple event logs can be centrally logged and monitored
without any agent and managed from a single computer. Events can also be directly associated with
tasks, which run in the redesigned Task Scheduler and trigger automated actions when particular events
take place.

124

Chapter 6: Working with Event Logs

In Windows 2008 and Vista operating systems, the Event Log service runs using svchost.exe, as shown
in Figure 6-2.

Figure 6-2

Event V iewer
Event logs on a host machine can be viewed with Microsoft’s Event Viewer. Event Viewer is available as
a Microsoft Management console snap-in, EventVwr.

There are two ways to launch EventVwr.

From the Control Panel, select Administrative Tools � Event Viewer, as shown in Figure 6-3.

Alternately, you could simply click Start � Run, type eventvwr, and click OK on Windows XP and
Windows Server 2003, as shown in Figure 6-4; or you can click Start and type eventvwr in the Search box
on Windows Vista and Windows Server 2008.

Event Logs
There are three main event logs:

❑ Application Log

❑ Security Log

❑ System Log

There are also other event logs dedicated for Windows PowerShell, Office Diagnostics, Office Sessions,
and more in Windows XP and Windows 2003, as shown in Figure 6-5.

125

Chapter 6: Working with Event Logs

Figure 6-3

Figure 6-4

In Windows 2008 and Windows Vista operating systems, Event Viewer looks much different than in Win-
dows XP or Windows 2003 (see Figure 6-6). Windows logs, including the Application Log, the Security
Log, and the System Log, are separated from logs for other applications and services.

This chapter concentrates only on the major event logs such as Application, Security, and System:

❑ Application log: The Application log contains events logged by programs. For example,
a database program may record a file error in the Application log. Events written to the
Application log are determined by the developer(s) of the software program.

126

Chapter 6: Working with Event Logs

Figure 6-5

Figure 6-6

127

Chapter 6: Working with Event Logs

❑ Security log: The Security log records events such as valid and invalid logon attempts, as well
as events related to resource use, such as creating, opening, or deleting files. For example, when
logon auditing is enabled, an event is recorded in the Security log each time a user attempts to
log on to the computer. You must be logged on either as Administrator or as a member of the
Administrators group in order to turn on, use, and specify which events are recorded in the
Security log.

❑ System log: The System log contains events logged by Windows system components. For
example, if a driver fails to load during startup, an event is recorded in the System log. Windows
predetermines the events that are logged by system components.

Event Viewer settings for each log can be updated, and the events it contains can be filtered using the
Properties and Filter dialogs, respectively, as shown in Figure 6-7 and Figure 6-8.

Figure 6-7

Log Entr y Types
Each event log contains different types of information. The information is categorized into five entry
types:

❑ Information: Indicates the successful operation of, for example, an application or service

❑ Warning: Indicates an event that may not necessarily be significant but which could indicate a
current or future problem

❑ Error: Indicates a significant problem, such as the failure of a service to start

128

Chapter 6: Working with Event Logs

Figure 6-8

❑ Success Audit: An audited security access attempt that succeeds

❑ Failure Audit: An audited security access attempt that fails

PowerShell provides the following dedicated cmdlet for accessing the Windows event log:

Get-EventLog

To find all the log types available on the local computer, execute the following command (see Figure 6-9):

Get-EventLog –list

Figure 6-9

To find the log types available on a remote computer, you just need to pass the remote computer name
to the ComputerName parameter.

129

Chapter 6: Working with Event Logs

The following example uses the remote hostname PowerServer3 (see Figure 6-10):

Get-EventLog -computerName PowerServer3 –list

Figure 6-10

In other examples of Get-EventLog shown later in this chapter, you can simply add ‘‘-computerName
PowerServer3’’ to see the results on the remote computer PowerServer3.

If you would like to query all the entries in the Application event log or the Windows PowerShell log,
all you have to do is pass the log name as a parameter. Execute the following commands, as shown in
Figure 6-11 and Figure 6-12:

Get-EventLog –LogName "Application"
Get-EventLog –LogName "Windows PowerShell"

Figure 6-11

As you know now, the Get-Member cmdlet provides all the methods and properties of any cmdlet.
Therefore, you could find information about Get-Eventlog by executing the following command (see
Figure 6-13):

Get-Eventlog -LogName "Application" -newest 1 | Get-Member | sort MemberType

130

Chapter 6: Working with Event Logs

Figure 6-12

Figure 6-13

You can find all the types of information available by querying the EntryType as follows (see Figure 6-14,
Figure 6-15, and Figure 6-16).

Get-EventLog -LogName "Application" | Select-Object EntryType -unique | Format-
Table –auto

Entry type 0 means the type information was not available.

Get-EventLog -LogName "System" -computername PowerServer3 | Select-Object
EntryType -unique | Format-Table –auto

Get-EventLog -LogName "Windows PowerShell" | Select-Object EntryType -unique |
Format-Table –auto

131

Chapter 6: Working with Event Logs

Figure 6-14

Figure 6-15

Figure 6-16

Browsing through a lot of lines in an event log is tedious. With the Get-EventLog cmdlet, you can filter
the entries that you would like to see. One of the parameters in the Get-EventLog cmdlet is newest.

As its name suggests, the newest parameter shows the newest entries in the event log. Execute the fol-
lowing command to show the newest ten entries from the event log (see Figure 6-17):

Get-EventLog -LogName "application" -newest 10

You could apply all the formatting techniques that you learned in Chapter 2 on this cmdlet, such as the
Where-Object cmdlet. For example, assume that you want to see all SQL Server–related errors in the
Application event log. You could achieve that by using the Where-Object cmdlet, as shown here (see
Figure 6-18):

Get-EventLog -LogName "Application" -computername PowerServer3 | Where-Object
{$_.Source -like "*SQL*"} | Where-Object {$_.EntryType -eq "Error"}

132

Chapter 6: Working with Event Logs

Figure 6-17

Figure 6-18

You could also use date ranges and sort the results. For example, the following will find all the error
messages generated on January 27, 2009 (see Figure 6-19):

Get-EventLog -LogName "Application" | Where-Object {$_.EntryType -eq "Error"} |
Where-Object {($_.TimeGenerated -gt "2009/01/27") -and ($_.TimeGenerated -lt
"2009/01/28")} | Sort-Object TimeGenerated -descending | Format-Table -auto

Figure 6-19

133

Chapter 6: Working with Event Logs

If you want to see the error messages that occurred on the remote computer PowerServer3 in the month
of January, you can run this command (see Figure 6-20):

Get-EventLog -ComputerName PowerServer3 -LogName "Application" | Where-Object
{$_.EntryType -eq "Error"} | Where-Object {($_.TimeGenerated -gt "2009/01/01") -and
($_.TimeGenerated -lt "2009/01/31")} | Sort-Object TimeGenerated -descending |
Format-Table –auto

Figure 6-20

Expor ting the event logs
You can export event log entries to an XML or CSV file or a simple text file for archiving or forwarding
purposes.

Let’s assume that you want to see all the application errors related to SQL Server and export them to a
.csv file. The following command would do that for you (see Figure 6-21). The cmdlet that you are going
to use is Get-EventLog. Get-EventLog cmdlet hands the collection to the next cmdlet, Where-Object. In
turn, Where-Object filters out any item namely ‘‘*SQL*.’’ After it finishes filtering, Where-Object hands
the remaining item to another Where-Object. The second Where-Object filters the collection further and
hands the remaining items to the Export-Csv object.

Get-EventLog -LogName "Application" -computername PowerServer3 | Where-Object
{$_.Source -like "*SQL*"} | Where-Object {$_.EntryType -eq "Error"} | Export-Csv
C:\PowerServer3_sqlevents.csv

Figure 6-21

134

Chapter 6: Working with Event Logs

The C:\PowerServer3_sqlevents.csv file can be opened in Excel, as shown in Figure 6-22.

Figure 6-22

You could export the same SQL Server events to an XML file, as shown in Figure 6-23. Here, you use the
cmdlet Export-Clixml to export the output of all the cmdlets before the pipeline:

Get-EventLog -LogName "Application" -computername PowerServer3 | Where-Object
{$_.Source -like "*SQL*"} | Where-Object {$_.EntryType -eq "Error"} | Export-Clixml
C:\PowerServer3_sqlevents.xml

Figure 6-23

The PowerServer3_sqlevents.xml file can be opened with any browser that is compatible with XML
browsing (see Figure 6-24).

135

Chapter 6: Working with Event Logs

Figure 6-24

You could also export the file to a simple text file, as shown in Figure 6-25. Here you are using the cmdlet
Out-File to export the output of all the cmdlets before the pipeline:

Get-EventLog -LogName "Application" -computername PowerServer3 | Where-Object
{$_.Source -like "*SQL*"} | Where-Object {$_.EntryType -eq "Error"} | Out-File
C:\PowerServer3_sqlevents.txt

Figure 6-25

You can open the sqlevents.txt file using Notepad, as shown in Figure 6-26.

PowerShell cmdlets Related to event log
The most commonly used cmdlets related to event logging are as follows:

❑ Get-EventLog

❑ Clear-EventLog

❑ Show-EventLog

❑ Limit-EventLog

❑ Write-EventLog

136

Chapter 6: Working with Event Logs

Figure 6-26

Windows PowerShell also provides two other cmdlets, New-EventLog and Remove-EventLog, which are
widely used for creating custom event logs. These cmdlets are not discussed here because they are not
useful for SQL Server administration.

The Clear-EventLog cmdlet deletes all of the entries from the specified event logs on either the local
computer or remote computers.

The next example attempts to clear the events from the Application event log using the -confirm switch.
Execute the following command, as shown in Figure 6-27. Select ‘‘No’’ when asked for confirmation.

Clear-EventLog -Logname "Application" -confirm

Figure 6-27

Now clear the event log related to Windows PowerShell using the -confirm switch. This time, select
‘‘Yes’’ when it prompts for confirmation, as shown in Figure 6-28.

Now use Event Viewer to see whether all the information in the Windows PowerShell event log has
been cleared. Launch EventVwr using one of the methods illustrated in the beginning of this chapter (see
Figure 6-29).

Another useful cmdlet is Show-EventLog, which when executed opens the EventVwr on the local
machine. If you want to see the event logs of a remote computer using EventVwr, you could execute the

137

Chapter 6: Working with Event Logs

Figure 6-28

Figure 6-29

Show-EventLog cmdlet as shown in the following example. Here, you are going to see the event logs of
the server PowerServer3 opened by the cmdlet (see Figure 6-30):

Show-EventLog -computername PowerServer3

The Write-EventLog cmdlet writes an event to an event log. In order to write the event to an event log,
you need to know the event source and the log type.

The -Source option specifies the event source, which is typically the name of the application that is
writing the event to the log. You could use the existing source available and write the log to that event or
create a new source using the New-EventLog cmdlet.

138

Chapter 6: Working with Event Logs

Figure 6-30

The following example shows all the sources available on the current host machine (see Figure 6-31):

Get-EventLog -logname "Application" | Select-Object Source -unique

Figure 6-31

In the next example, you write the message ‘‘SQL Server 2008 administration with Windows PowerShell’’
under the Application event log using the event source Userenv. This message is going to be inserted in
the log as an Information entry type (see Figure 6-32).

Write-EventLog -logname "Application" -source userenv -eventID 3001 -entrytype
Information -message "SQL Server 2008 administration with Windows PowerShell"
-category 1 -rawdata 10,20

139

Chapter 6: Working with Event Logs

Figure 6-32

You can limit the size of the event log retention period using the Limit-EventLog cmdlet. The following
command keeps the log entries for seven days and overwrites the log when it is overflowing:

Limit-EventLog -logname "Windows PowerShell" -overflowaction OverwriteOlder -
retention 7

Summary
This chapter discussed event logs and types of event entries. It showed you how to query different event
logs and get the information you need based on log names, entry types, and dates. It also demonstrated
how to export event logs into files. Finally, you learned how to clear an event log, write to an event log,
and launch Event Viewer using the Show-EventLog cmdlet.

Chapter 8 discusses the WMI method of accessing the event logs in detail.

140

Working with Windows
Ser vices and Processes

This chapter looks at the cmdlets related to Windows services and processes in detail. It covers the
following topics:

❑ Windows services

❑ Windows PowerShell and Windows services

❑ Windows processes

❑ Windows PowerShell and Windows processes

What Is a Windows Ser vice?
A Windows service is a long-running executable that performs specific functions and is designed
not to require user intervention. By definition, it’s a program that runs invisibly in the background.
These services load and start running whether or not anyone logs into the computer, unlike a pro-
gram that is launched from the Startup folder under All Programs.

Many of the Windows services start when the Microsoft Windows operating system is booted,
and run in the background as long as Windows is running. They are similar in concept to a UNIX
daemon. They appear in the Processes list in Windows Task Manager, most often with a username
of SYSTEM, LOCAL SERVICE, or NETWORK SERVICE, though not all processes with the SYSTEM
username are services.

Once a service is installed, it can be managed by launching Services from the Windows Control
Panel � Administrative Tools, or by selecting Start � Run and typing Services.msc. The Services
window shown in Figure 7-1 will open.

Chapter 7: Working with Windows Services and Processes

Figure 7-1

As shown in Figure 7-1, the Services management console provides a brief description of each service
function and displays the path to the service executable, its current status, its startup type, dependencies,
and the account under which the service is running. It enables users to do the following:

❑ Start, stop, pause, or restart services

❑ Specify service parameters

❑ Change the startup type, which includes Automatic, Manual, Disabled, and Automatic
(Delayed):

❑ Automatic: Starts the services at system logon

❑ Manual: Starts a service as required or when called from an application (according to defi-
nition, but only some of the time in practice, depending on the service)

❑ Disabled: Completely disables the service and prevents it and its dependencies from run-
ning

❑ Automatic (Delayed): A new startup type introduced in Windows Vista that waits for the
system to complete the booting process and finish the initial busy operations

❑ Change the account under which the service logs on

❑ Configure recovery options upon service failure

❑ Export the list of services as a text file or a CSV file

If you want a quick visual of which items are running or stopped, you can also use the MS Configuration
Utility by selecting Start � Run and typing msconfig.exe. However, the information provided is limited,
as shown in Figure 7-2.

142

Chapter 7: Working with Windows Services and Processes

Figure 7-2

Windows PowerShell and Windows Ser vices
Windows PowerShell provides a list of cmdlets that can be used to create, manage, and delete Windows
services.

To find all the cmdlets that are related to Windows services, execute the following command (see
Figure 7-3):

Get-Command -CommandType cmdlet *service*

Figure 7-3

The following Windows PowerShell cmdlets are related to accessing Windows services:

❑ Get-Service

❑ New-Service

❑ New-WebServiceProxy

143

Chapter 7: Working with Windows Services and Processes

❑ Restart-Service

❑ Resume-Service

❑ Set-Service

❑ Start-Service

❑ Stop-Service

❑ Suspend-Service

The following sections describe some of the commonly used and useful cmdlets related to Windows
services.

Get-Service
The Get-Service cmdlet lists all the services on a local or remote computer. For example, you can find
all the running services that start with SQL by executing the following command (see Figure 7-4).

Get-Service -DisplayName "SQL*" -Computername PowerServer3 | Where-Object
{$_.status -eq "Running"}

As shown by the results in Figure 7-4, you can see that all the services whose display name starts with
SQL are listed from the remote computer PowerServer3.

Figure 7-4

If you want to see all the services whose name begins with ‘‘SQL’’ but exclude any service name that has
the word ‘‘Writer’’ from the output, you can use the -Exclude parameter as shown here (see Figure 7-5):

Get-Service -Include "SQL*" -Exclude "*Writer*" -ComputerName PowerServer3 |
Where-Object {$_.status -eq "Running"}

Now let’s list all the properties associated with the Get-Service cmdlet. Execute the following
Get-Service cmdlet with the Get-Member cmdlet (see Figure 7-6):

Get-Service | Get-Member -MemberType properties

144

Chapter 7: Working with Windows Services and Processes

Figure 7-5

Figure 7-6

Now list all the methods associated with the Get-Service cmdlet. Execute the following Get-Service
cmdlet with the Get-Member cmdlet (see Figure 7-7):

Get-Service | Get-Member -MemberType methods

Figure 7-7

145

Chapter 7: Working with Windows Services and Processes

You can start and stop a Windows service using the methods available for Get-Service. The following
example displays the status of the Windows service "aspnet_state" and then tries to start and then stop
the service (see Figure 7-8):

(Get-Service -Name "aspnet_state").status
(Get-Service -Name "aspnet_state").start()
(Get-Service -Name "aspnet_state").status
Start-Sleep 5
(Get-Service -Name "aspnet_state").status
(Get-Service -Name "aspnet_state").stop()
(Get-Service -Name "aspnet_state").status
Start-Sleep 5
(Get-Service -Name "aspnet_state").status

Figure 7-8

From the preceding snapshot, you can see that we got the status of the service using properties, and
started and stopped the service using the start()and stop()methods, respectively. You can also see the
status changing from ‘‘StartPending’’ and ‘‘StopPending’’ to ‘‘Running’’ and ‘‘Stopped’’, respectively.

Stop-Service
Instead of using the methods from Get-Service to stop a service, you could use the cmdlet Stop-Service.

Assume that you want to stop the aspnet state service using the stop-service cmdlet. The following
example shows the status of the service, stops the service, and then shows the status of the service again
(see Figure 7-9).

Get-Service -Name aspnet_state
Stop-Service -Name aspnet_state
Get-Service -Name aspnet_state

Now assume that you want to stop all the SQL Server–related services on the local machine. You can use
the Get-Service and Stop-Service cmdlets together. The following steps lead to stopping all running
SQL-related services. It would be a disaster if you ran the Stop-Service cmdlet on a production machine,
so you can use the -WhatIf switch parameter with the Stop-Service cmdlet and preview the results (see
Figure 7-10):

Get-Service -DisplayName *sql* | Where-Object {$_.Status -eq "Running"} | Stop-
Service -WhatIf

146

Chapter 7: Working with Windows Services and Processes

Figure 7-9

Figure 7-10

All these services can be stopped one by one with confirmation using the -confirm parameter, as shown
in the following example. This enables users to choose which service to stop (see Figure 7-11).

Get-Service -Displayname *sql* | Where-Object {$_.Status -eq "Running"}| Stop-
Service -confirm

Figure 7-11

147

Chapter 7: Working with Windows Services and Processes

You could also use the Stop-Service cmdlet with the -confirm parameter directly, as shown here (see
Figure 7-12):

Stop-Service -Displayname *sql* -Confirm

Figure 7-12

Start-Service
Instead of using the methods from Get-Service to start a service, you could use the cmdlet
Start-Service.

Now try to start a stopped SQL Server Agent service. The following example will try to start the
SQLAgent$SQL2008 service (see Figure 7-13):

Start-Service -Name SQLAgent`$SQL2008
Get-Service -Name SQLAgent`$SQL2008

PowerShell assumes that anything prefixed with the dollar sign ($) is a variable. The backtick sign ()̀ is
used to escape the $ sign.

Figure 7-13

Now use the following to find all the SQL server–related services that are not started (see Figure 7-14):

Get-Service -DisplayName *sql* | Where-Object {$_.Status -eq "Stopped"}

148

Chapter 7: Working with Windows Services and Processes

Figure 7-14

As you did in Stop-Service, you can try to start all the SQL Server–related services that are stopped with
a WhatIf scenario, as shown in the following example (see Figure 7-15):

Get-Service -DisplayName *sql* | Where-Object {$_.Status -eq "Stopped"} |
Start-Service -WhatIf

Figure 7-15

Similarly, just as you did with Stop-Service, you can try to start all the SQL Server–related services that
are stopped with the -confirm parameter (see Figure 7-16):

Get-Service -DisplayName *sql* | Where-Object {$_.Status -eq "Stopped"} |
Start-Service -confirm

Figure 7-16

149

Chapter 7: Working with Windows Services and Processes

Set-Service
The next useful cmdlet related to Windows services is Set-Service. Set-Service is very useful for chang-
ing configurations on the Windows service. One of the commonly used configurations in any Windows
service is the startup type.

Let’s see the startup option of SQL Server Agent by launching Services.msc and double-clicking the
SQLAgent$SQL2008 service.

As shown in Figure 7-17, the service startup type is set to Manual, meaning when windows starts, it
won’t automatically start the SQLAgent$SQL2008 service.

Figure 7-17

Now you can use Set-Service to change the startup type from Manual to Automatic, as shown in
Figure 7-18:

Set-Service -Name "SQLAGENT`$SQL2008" -StartupType "Automatic"

Figure 7-18

When you launch Services.msc and open SQLAgent$SQL2008, you can see that the startup type
changed from Manual to Automatic (see Figure 7-19).

The WMI method of accessing the Windows services on a local and remote machine are discussed in
Chapter 8 in detail.

150

Chapter 7: Working with Windows Services and Processes

Note that you cannot stop and start a service on a remote machine using Stop-Service and Start-
Service yet. The -computername option may become available in the official Windows PowerShell 2.0
RTM release.

Figure 7-19

Working with Windows Processe s
Windows processes are executables that are currently running on the host. All the Windows processes
can be viewed and managed using Task Manager.

Task Manager can be launched by executing TaskMgr. It can also be launched by selecting Start � Run
and entering taskmgr, as shown in Figure 7-20.

Figure 7-20

When TaskMgr is launched, you can manage Window processes, such as killing the process, setting
process priority, and so on, under the Processes tag (refer to Figure 7-21 and Figure 7-22).

151

Chapter 7: Working with Windows Services and Processes

Figure 7-21

Figure 7-22

There are three commonly used cmdlets that you can use to access the processes on a host machine:

❑ Get-Process

❑ Start-Process

❑ Stop-Process

Two other cmdlets available are as follows:

❑ Wait-Process

❑ Debug-Process

152

Chapter 7: Working with Windows Services and Processes

All the available cmdlets related to processes can be found by executing the following cmdlet (see
Figure 7-23):

Get-Command *process* -CommandType "cmdlet"

Figure 7-23

Get-Process
Windows PowerShell provides the cmdlet Get-Process, which enables you to get information on Win-
dows processes and manage them. To get a list of processes running on the local computer, execute the
following command (see Figure 7-24):

Get-Process

Figure 7-24

The default output of the Get-Process cmdlet is the process ID, process name, and six performance
counters on memory and CPU usage. Each counter corresponds to a property of the process object.

Besides these six properties, there are many others. The mostly commonly used properties get informa-
tion such as priority, location, CPU and memory usage of the executable, and more.

153

Chapter 7: Working with Windows Services and Processes

Now query all the properties available in the Get-Process cmdlet. Execute the following Get-Process
cmdlet with the Get-Member cmdlet as shown here (see Figure 7-25):

Get-Process |Get-Member –MemberType properties

Figure 7-25

To query all the methods available in the Get-Process cmdlet, execute the following with the Get-Member
cmdlet as shown here (see Figure 7-26):

Get-Process |Get-Member –MemberType methods

Figure 7-26

As shown in the list of properties in Figure 7-25, you can see there are many properties related to memory,
the CPU, and so on. You can call some of the useful properties according to your requirements.

Let’s look at the resources used by SQL Server–related services. The following command gets information
about priority, location of the executable, the CPU, and memory usage. Here, we use the –Name parameter
to filter out the processes (see Figure 7-27):

Get-Process –Name "sql*" | Format-List ProcessName, Id, BasePriority,
PriorityClass, PriorityBoostEnabled, MachineName, Path, UserProcessorTime,

154

Chapter 7: Working with Windows Services and Processes

PrivilegedProcessorTime, Threads, WorkingSetSize, PagedSystemMemorySize,
PrivateMemorySize, VirtualMemorySize

Figure 7-27

Changing the priority of a process is a common task. For example, if you want to change the priority of
the SQLAGENT.exe process just shown from Normal to High, you can accomplish that by executing the
following cmdlet:

$sqlagent=Get-Process -ProcessName "SQLAgent"
$sqlagent | select BasePriority, PriorityClass
$sqlagent.PriorityClass="High"
$sqlagent | select BasePriority, PriorityClass

The preceding example verified the Priority class initially, and then updated the Priority class and again
verified the change. As shown in Figure 7-28, the priority of the SQLAGENT.exe process changed from
Normal to High.

Figure 7-28

Stop-Proces s
You can stop a process using the kill method. However, Windows PowerShell already provides a separate
cmdlet for that: Stop-Process. The Stop-Process cmdlet stops one or more running processes. You can

155

Chapter 7: Working with Windows Services and Processes

specify a process by process name or process ID (PID), or pass a process object to Stop-Process. For Get-
Process, the default is by process name. For Stop-Process, the default is by process ID. If you want to
stop a process by name, you need to use the –Processname parameter.

In the example from the last section, you saw a few SQL Server–related processes such as
SQLAGENT.exe and SQLservr.exe running on the local machine. You could stop those processes
using Stop-Process by executing the following command (see Figure 7-29):

Get-Process "SQL*"
Stop-Process -ProcessName "SQL*" -Confirm

Figure 7-29

However, if you have two SQLServer.exe processes running and you want to kill only the SQLServr.exe
process, then you need to find the unique process ID for SQLServr.exe. Once the unique process ID is
found, you can kill the process. This is illustrated in the following example:.

Get-Process -ProcessName sqlservr | Select-Object ID, ProcessName

To terminate the correct process, you can execute Stop-Process by passing the correct process ID, as
shown here:

Stop-Process 2308

If you want to access the processes from a remote computer, you can use the parameter -computername
(see Figure 7-30):

Get-Process -ComputerName "PowerServer3"

Note that PowerServer3 is the remote host name.

156

Chapter 7: Working with Windows Services and Processes

Figure 7-30

Summary
This chapter has discussed Windows services and Windows processes. In particular, you learned how to
query services and processes using PowerShell cmdlets.

The chapter also illustrated how to start and stop Windows services and Windows processes with the
WhatIf and confirm switch parameters.

157

Working with WMI

Chapters 5, 6, and 7 showed how to manage event logs, services, processes, environment variables,
and the registry with Windows PowerShell cmdlets. In this chapter, you will learn how to man-
age the same resources through Windows Management Instrumentation (WMI) classes. WMI is
Microsoft’s primary technology for managing Windows systems. WMI is so essential to Windows
management that it has been included in every operating system released by Microsoft since Win-
dows NT 4.0. WMI includes a large collection of classes that represent various system components,
which enables Windows-based operating systems to be monitored and controlled, both locally and
remotely. Since SQL Server 2005, new WMI classes were introduced to manage SQL Server config-
uration settings and events. This chapter focuses on the operating system components; the WMI
classes specific to SQL Server administration are explained in Chapters 9 and 10.

This chapter covers the following topics:

❑ Permission issues regarding WMI

❑ The WMI model

❑ Working with Event Log

❑ Working with services

❑ Working with processes

❑ Working with environment variables

❑ Working with the registry

Permission Issues and WMI
In order for WMI to work, the Windows Management Instrumentation service must be running.
The service cannot be disabled and it must run under the local system account. If this account is
changed, WMI will not have the permissions needed to operate properly.

Chapter 8: Working with WMI

If you connect with WMI remotely with a user account that is not a member of the Administrators group
on the server computer, then you will probably encounter problems. In this case, you need to examine
the DCOM security and Windows Firewall settings. To do this, perform the following steps:

❑ On the client computer, enable Windows Management Instrumentation (WMI) for remote
administration.

1. Click Start � Run, type gpedit.msc, and then click OK.

2. In the Group Policy Object Editor, expand Computer Configuration, expand Administra-
tive Templates, and then expand Network.

3. Expand Network Connections, expand Windows Firewall, and then click Domain Profile.

4. In Windows XP or Windows Server 2003, right-click Windows Firewall: Allow remote
administration exception � Properties. In Windows Vista or Windows Server 2008, right-
click Windows Firewall: Allow inbound remote administration exception.

5. In the dialog, click Enabled � OK.

❑ On the server and on the client computer, specify that DCOM is available for all Microsoft COM
applications.

1. Click Start � Run, type dcomcnfg, and then click OK.

2. In the Component Services dialog, expand Component Services, expand Computers, and
right-click My Computer � Properties.

3. In the My Computer Properties dialog, click the Default Properties tab.

4. On the Default Properties tab, select the Enable Distributed COM on this computer check
box, and then click OK.

❑ On the server computer, add the user account you are connecting with to the Distributed COM
Users group.

1. Click Start � Run, type lusrmgr.msc, and then click OK.

2. In the Local Users and Groups dialog, click Groups, and then double-click Distributed
COM Users.

3. In the Distributed COM Users Properties dialog, click Add.

4. In the Select Users dialog, type the user name under ‘‘Enter the object names to select,’’ and
then click OK twice.

If your server computer is a Windows XP machine, you won’t see the Distributed COM Users
group. If you still have problems connecting with WMI remotely, perform the following steps.

On the server computer, make sure the user account you are connecting with has the rights to
launch and activate COM applications remotely.

1. Click Start � Run, type dcomcnfg, and then click OK.

2. In the Component Services dialog, expand Component Services, expand Computers, and
right-click My Computer � Properties.

3. In the My Computer Properties dialog, click the Default Properties tab.

160

Chapter 8: Working with WMI

4. On the COM Security tab, click Edit Limits under Launch and Activation Permissions.

5. On the Launch and Activation Permission window, make sure the user account is allowed
for Local Launch, Remote Launch, Local Activation, and Remote Activation, and then click
OK.

The WMI Model
Before you start writing scripts to access SQL Server WMI objects, it is helpful to first look at the WMI
model and examine some basic concepts.

The WMI model has three layers, as shown in Figure 8-1.

WMI Scripting Library

WMI Infrastructure

Common Information
Model (CIM)

CIM Object Manager (CIMOM)

WMI Provider

Managed Resource’s Native
Application Programming Interfaces

Managed Resource
Service, event log, process, SQL

Server network protocol

Windows PowerShell script

WMI Consumer

Figure 8-1

The lowest layer in the WMI model is managed resource. Windows resources that can be managed
using WMI include event logs, services, processes, environment variables, registry settings, networking
components and many more.

161

Chapter 8: Working with WMI

The middle layer is the WMI infrastructure. It consists of four components. WMI providers act as an inter-
mediary between managed resources and WMI. WMI providers can access managed resources through
the resources’ native Win32 APIs, then forward the resource information to the Common Information
Model Object Manager (CIMOM) for integration and interpretation. The CIMOM handles consumer
requests for managed resources, and uses the information obtained from the CIM repository to direct
the consumer’s requests to the appropriate provider. The CIM repository stores the class definitions that
model the managed resources and provides provider and class information to CIMOM. Last but not least,
the WMI scripting library provides a set of automation objects through which scripting languages, such
as Windows PowerShell script, VBScript, and JScript, access the WMI infrastructure.

The top layer in the WMI model is WMI consumer. A consumer can be a Windows PowerShell script, a VB
script, or a managed application. The consumer accesses the management information available through
the WMI infrastructure.

The classes stored in the CIM repository are grouped into namespaces. Each namespace can contain one
or more of the following groups of classes: system classes, core and common classes, and/or extension
classes. System classes are classes that support internal WMI configuration and operations. They can be
identified by the two underscores prefacing their names, such as Provider and NAMESPACE. The core
and common classes are derived from the system classes. They define resources common to particular
management areas, such as systems and networks, but independent of platform. They can be identified
by the CIM prefix. Extension classes are technology-specific classes created by system and application
software developers; an example of the Win32 LogicalDisk class was shown in Chapter 5. Because
extension classes provide platform-specific information, they are the primary group of classes you will
use in your scripts.

The CIM is based on object-oriented design principles, so CIM classes can also be divided into three
primary class types in the object hierarchy: abstract, static, and dynamic. An abstract class is a template
used to derive new abstract and non-abstract classes, and cannot be used to retrieve instances of managed
resources. A static class defines data physically stored in the CIM repository, the most common of which
is WMI configuration and operational data. A dynamic class models a WMI managed resource that
is dynamically retrieved from a provider. The most common use of the dynamic class type is in the
definition of extension classes. Therefore, the classes you will use in WMI scripts are most likely to be
dynamic and extension.

If you are not familiar with the WMI class hierarchy, you can go to www.microsoft.com/downloads/
details.aspx?FamilyID=6430f853-1120-48db-8cc5-f2abdc3ed314&DisplayLang=en and download
WMI Administrative Tools. The tools include WMI CIM Studio, WMI Object Browser, WMI Event Reg-
istration Tool, and WMI Event Viewer. WMI CIM Studio and WMI Object Browser are nice tools to view
classes and their properties, methods, associations, and instances in a CIM repository.

WMI organizes classes into a hierarchy of namespaces. You can use the Get-WmiObject cmdlet shown
in Chapter 5 to query the available namespaces under the root level. The namespaces are the class type
of Namespace. The following command queries the namespaces at the root level:

Get-WmiObject -class __Namespace -namespace root | Select-Object Name

Figure 8-2 shows the output.

The root\CIMV2 namespace is the default namespace for the Get-WmiObject cmdlet, meaning you do not
have to specify the namespace in Get-WmiObject if you are referring to this namespace. Although you
can change the default namespace for VB scripting by changing the Default Namespace value under the

162

Chapter 8: Working with WMI

registry key HKEY LOCAL MACHINE\SOFTWARE\Microsoft\WBEM\Scripting, this registry key
has no effect on the Get-WmiObject cmdlet.

Figure 8-2

The root\CIMV2 namespace contains the core Windows OS classes. You can retrieve a list of classes under
root\CIMV2 using this command:

Get-WmiObject –list

However, the list is quite long. The following abbreviated list contains only the classes for the event logs,
services, and processes used in this chapter:

❑ Win32_NTEventlogFile

❑ Win32_NTLogEvent

❑ Win32_Service

❑ Win32_Process

In Chapters 5, 6, and 7 you learned how to work with the registry, environment variables, event logs, ser-
vices, and processes on the local and remote computer with the built-in cmdlets in Windows PowerShell.
Here you will see how to access the same resources through WMI classes both locally and remotely.

To connect to a remote computer, simply specify the computer name as the value for the –computerName
parameter of the Get-WmiObject cmdlet. You may be wondering why we are showing you an alter-
native method to manage the same resources. The reason is because WMI classes enable you to access
more Windows resources or get more information about the same resources than the built-in cmdlets
provide you with. For example, the Win32 LogicalDisk class shown in Chapter 5 provides much more
information about logical drives than the Get-PSDrive cmdlet, such as free space. Other examples are
the Start-Service and Stop-Service cmdlets. As mentioned in Chapter 7, even with Windows Power-
Shell CTP3, you cannot start or stop a remote service using the cmdlets yet, whereas you can with the
Win32 Service WMI class.

This chapter is intended to give you an overview of how to work with WMI classes in Windows Power-
Shell. There are a lot more WMI classes that won’t be covered in this chapter that you are encouraged to
explore on your own.

163

Chapter 8: Working with WMI

Note that we are using a local computer, PowerPC, and a remote computer, PowerServer3. We ran all
the commands in our examples on the local computer PowerPC. Before you run the commands in your
environment, you will need to change the value of the –computerName parameter from PowerServer3 to
your remote computer name.

Working with Event Log
The Win32 NTEventlogFile class represents event log files of the operating system. To get a list of log
files available on your local computer, execute the following command:

Get-WmiObject -class Win32_NTEventlogFile | Format-Table –wrap

As shown in Figure 8-3, the LogfileName column contains the names of the log files. The Name column
contains the log file locations. The NumberOfRecords column shows the number of entries in each log file.
Seven event logs are non-empty and contain entries on the local computer.

Figure 8-3

To access the log files on a remote computer, use the -computerName parameter and pass the remote com-
puter name. For example, to connect to the remote computer PowerServer3, run the following command:

Get-WmiObject -computerName PowerServer3 -class Win32_NTEventlogFile | select
FileSize, LogfileName, Name, NumberOfRecords, CSName | Format-Table –wrap

164

Chapter 8: Working with WMI

Figure 8-4 shows a list of event log files, including Application, Security, System, and Windows Power-
Shell event log files on the remote computer PowerServer3.

Figure 8-4

The Win32 NTLogEvent class represents instances from the Windows NT event logs. Every entry in the
event log makes up an instance of this class. The LogFile property of this class has the name of the
Windows NT event log file. To get a list of the log files that contain the last 100 entries on the local
computer, execute the following command. The -unique switch parameter in the Select-Object cmdlet
is used to eliminate duplicates in the result set and retrieve only unique log file names.

Get-WmiObject –namespace root\CIMV2 -class Win32_NTLogEvent | Select-Object
LogFile –last 100 -unique

As shown in Figure 8-5, the last 100 entries all come from the Windows PowerShell event log.

Figure 8-5

If you encounter the error ‘‘Quota violation’’ when running this command, you can increase the
MemoryPerHost setting of the _ProviderHostQuotaConfiguration class to fix it. However, be careful
when changing this setting, as it increases the amount of private memory that can be held by every host
provider process. To increase the value, perform the following steps:

1. Select Start � Run and type wbemtest.exe.

2. Click Connect on the Windows Management Instrumentation Tester.

3. In the Namespace text box, just enter root. Click Connect.

4. Select Enum Instances.

165

Chapter 8: Working with WMI

5. In the Class Info dialog, enter the superclass name as __ProviderHostQuotaConfiguration
and click OK.

6. In the Query Result window, double-click _ProviderHostQuotaConfiguration=@.
7. In the Object Editor window, under Properties, find the property MemoryPerHost and

double-click it.

8. Increase the value and select Save Property. Close the windows and restart the machine.

An excellent blog about the setting is available at http://blogs.technet.com/askperf/archive/
2008/09/16/memory-and-handle-quotas-in-the-wmi-provider-service.aspx.

To get a list of log files that contain the last 100 entries on the remote computer PowerServer3, run the
following command:

Get-WmiObject –computerName PowerServer3 –namespace root\CIMV2 -class
Win32_NTLogEvent | Select-Object LogFile –last 100 –unique

Figure 8-6 shows the list.

Figure 8-6

If you want to query all of the entries in the Application event log, all you have to do is pass LogFile as
a filter to the Get-WmiObject cmdlet:

Get-WmiObject -namespace root\CIMV2 -class Win32_NTLogEvent -filter
"LogFile=’Application’"

Alternately, you can issue a WQL query that uses a where condition on the LogFile property:

Get-WmiObject -namespace root\CIMV2 -query "Select * from Win32_NTLogEvent where
LogFile=’Application’"

In most cases, you will want to view only some of the thousands of entries in the Application event log.
For example, you might want to view only the last entry. You can use the Select-Object cmdlet and its
-last parameter to filter the last entry:

Get-WmiObject -namespace root\CIMV2 -class Win32_NTLogEvent -filter
"LogFile=’Application’" | Select-Object -last 1

Figure 8-7 shows the last Application event log entry on the local computer.

166

Chapter 8: Working with WMI

Figure 8-7

To see all the properties of instances of the Win32 NTLogEvent class, you just need to pipe the last event
log object to the Get-Member cmdlet:

Get-WmiObject -namespace root\CIMV2 -class Win32_NTLogEvent | Select-Object -last 1 |
Get-Member –MemberType Property

Figure 8-8 shows all the properties of the event class. The Category property is a number specific to the
event source. The EventType property describes the type of event.

Possible values for the event types are listed in the following table.

Value Meaning

1 Error

2 Warning

3 Information

4 Security Audit Success

5 Security Audit Failure

167

Chapter 8: Working with WMI

Figure 8-8

The Message property contains the event message as it appears in the Windows NT event log. The
SourceName property contains the name of the source that generated the entry. For SQL Server–related
events, the source name can be an instance name, such as MSSQLServer or MSSQL$INST2008, or a service
name, such as SQLBrowser. The TimeGenerated property contains the date and time the event was gen-
erated. The TimeWritten property contains the date and time the event was written to the log file. The
Type property also contains the type of event, and is an enumerated string. The User property contains
the user name of the logged-on user when the event occurred. If the user name cannot be determined,
then this will be NULL.

You can find all the types of events available in the Application event log on the local computer by query-
ing EventType and type. Use the Select-Object cmdlet to select the two properties and use the -unique
parameter to discard duplicates. Then you can use the Sort-Object cmdlet to sort the event types:

Get-WmiObject -namespace root\CIMV2 -class Win32_NTLogEvent -Filter
"LogFile=’Application’" | Select-Object EventType, Type -unique | Sort-Object
EventType

Figure 8-9 shows the output.

You can also filter events based on the event source. For example, if you want to look at the error events
generated by the default SQL Server instance in the Application log, instead of using the –filter param-
eter as in the previous command, you can use the Where-Object cmdlet to do the filtering based on the
LogFile name, SourceName, and EventType:

Get-WmiObject -namespace root\CIMV2 -class Win32_NTLogEvent | Where-Object {
($_.LogFile -eq ‘Application’) -and ($_.SourceName -eq "MSSQLSERVER") -and
($_.EventType -eq 1) } | Format-List SourceName, Message, TimeGenerated

168

Chapter 8: Working with WMI

Figure 8-9

The SQL Server–specific error messages are shown in Figure 8-10.

Figure 8-10

You can also filter events based on date ranges. The following example uses the Where-Object cmdlet
to filter the events whose TimeGenerated property is greater than 20081130 (Nov 30, 2008) and less than
20081201 (Dec 1, 2008), thus getting the error events that occurred on Nov 30, 2008. Then the events are
sorted in descending order by time, and displayed in a list:

Get-WmiObject -namespace root\CIMV2 -class Win32_NTLogEvent -Filter
"LogFile=’Application’" | Where-Object { ($_.EventType -eq 1) –and ($_.TimeGenerated
-gt "20081130") -and ($_.TimeGenerated –lt "20081201") } | Sort-Object
TimeGenerated -descending | Format-List

Figure 8-11 shows the events generated on Nov 30, 2008.

169

Chapter 8: Working with WMI

Figure 8-11

Working with Services
The Win32 Service class represents the services on a computer. To get a list of services on the local com-
puter, run the following command. Notice that the root\CIMV2 namespace is omitted in the command
because it is the default namespace:

Get-WmiObject -class Win32_Service

Figure 8-12 shows the output.

To get a list of services on the remote computer PowerServer3, execute the following command:

Get-WmiObject –computerName PowerServer3 -class Win32_Service

Six properties are listed for each service, as shown in Figure 8-13. The ExitCode property represents
the Windows error code that defines errors encountered when starting or stopping the service. In our
example, 0 means the operation to start or stop the service was completed successfully, and 1077 means
no attempts to start the service were made since the last reboot. The Name property provides a name that

170

Chapter 8: Working with WMI

uniquely identifies the service. The ProcessId contains the process identifier under which the service
is running. The StartMode property determines how the service is started. In our example, Auto means
the service is started automatically by the service control manager (SCM) during system startup. Manual
means the service is started by the SCM only when a process calls the StartService method. The State
property contains the current state of the service. The Status property indicates the current status of the
object. This can be an operational status, such as OK, Degraded, or Pred Fail, or a non-operational status,
such as Error, Starting, Stopping, or Service.

Figure 8-12

Besides the six properties just described for each service, other commonly used properties and methods
for the Win32 Service class are as follows:

❑ Description: Contains the detailed description of the service.

❑ DisplayName: Contains the display name of the service. For SQL Server services, it can be SQL
Server (MSSQLSERVER), SQL Server Agent (INSTANCE1), and SQL Server Browser.

❑ ErrorControl: Indicates the severity of the error if this service fails to start during startup. The
value defines the action taken by the startup program if failure occurs. Most of the services are
installed using the Normal error control code; and if they fail before the user logs on, the user
receives the notification ‘‘At least one service or device failed during startup.’’

❑ PathName: Contains the full path to the service binary file that implements the service.

❑ Started: A Boolean variable indicating whether the service has been started.

171

Chapter 8: Working with WMI

❑ StartName: Account name under which a service runs. The account name can be a local account,
such as LocalSystem or NT AUTHORITY\NetworkService, or a domain account in the format of
DomainName\Username.

❑ SystemName: Name of the computer that hosts this service.

Figure 8-13

Consider the SQL Server service of the default instance on the local computer and its properties. The
following command uses the Where-Object cmdlet to filter the service, and uses the Select-Object
cmdlet to retrieve its properties:

Get-WmiObject -class Win32_Service | Where-Object {$_.Name -eq ‘MSSQLSERVER’} |
Select-Object Name, ExitCode, ProcessId, StartMode, State, Status, Description,
DisplayName, ErrorControl, PathName, Started, StartName, SystemName

As shown in Figure 8-14, the SQL Server service of the default instance started successfully with an exit
code 0, and has been running under a process ID of 5548 on the local computer, PowerPC.

The Auto StartMode indicates that this service starts automatically at system startup. This
service is displayed as SQL Server (MSSQLSERVER) in the Service Management Console.
The service binary file sqlservr.exe is located under C:\Program Files\Microsoft SQL
Server\MSSQL10.MSSQLSERVER\MSSQL\
Binn. The service account of this service is the domain account SqlService in the PowerDomain
domain.

172

Chapter 8: Working with WMI

Figure 8-14

The Win32 Service class also provides methods for working with the services. Some of them are listed
in the following table.

Method Description

StartService Attempts to place a service into the startup state.

StopService Places a service in the stopped state.

ChangeStartMode Modifies the start mode of a service.

Change Modifies a service.

GetSecurityDescriptor Returns the security descriptor that controls access to the
service. This method is available starting with Windows Vista.

SetSecurityDescriptor Writes an updated version of the security descriptor that
controls access to the service. This method is available starting
with Windows Vista.

The StartService method starts a service. Let’s start a stopped SQL Server–related service. To filter the
stopped SQL Server–related services with the Where-Object cmdlet, execute this command:

Get-WmiObject -class Win32_Service | Where-Object { ($_.Name -like ‘*SQL*’) -and
($_.State -eq ‘Stopped’) }

As shown in Figure 8-15, the last service, the SQL Server Agent service for the default instance, is stopped.

To start it, invoke the StartService method on the object associated with the SQLSERVERAGENT
service:

(Get-WmiObject -class Win32_Service | Where-Object {$_.Name -eq
‘SQLSERVERAGENT’}).StartService()

173

Chapter 8: Working with WMI

Figure 8-15

As shown in Figure 8-16, the 0 return code from the StartService method indicates the agent started
successfully.

Figure 8-16

To verify that the SQLSERVERAGENT service started, run the following command:

Get-WmiObject -class Win32_Service | Where-Object { ($_.Name -like ‘SQLSERVERAGENT’) }

174

Chapter 8: Working with WMI

As shown in Figure 8-17, the state of the service has changed from Stopped to Running, and the service
is running under process ID 1548.

Figure 8-17

To start a service on a remote computer, you just need to add the –computerName parameter. For example,
the following command starts the SQLSERVERAGENT service on the remote computer PowerServer3:

(Get-WmiObject -class Win32_Service –computerName PowerServer3 | Where-Object {
($_.Name -eq ‘SQLSERVERAGENT’) }).StartService()

Figure 8-18

As shown in Figure 8-18, the 0 return code from the StartService method indicates that the agent started
successfully on the remote computer, PowerServer3. The built-in cmdlet Start-Service in Windows
PowerShell 2.0 CTP3 cannot be used to start or stop remote services, so you have more flexibility using
the WMI class Win32 Service.

The StopService method places a service in the stopped state. Let’s stop all the running SQL
Server–related services on the local computer. To filter these services with the Where-Object cmdlet,
execute the following command:

Get-WmiObject -class Win32_Service | Where-Object { ($_.Name -like ‘*SQL*’) -and
($_.State -eq ‘Running’) }

Figure 8-19 shows all the running services.

175

Chapter 8: Working with WMI

Figure 8-19

Similar to the StartService method, the StopService method is applied to only one service object;
you cannot just pipeline multiple service objects and invoke the method on them. You need to use the
ForEach-Object cmdlet, and apply the method against each service object. Furthermore, note that the
SQL Server Agent service for the default instance (SQLSERVERAGENT) is below the SQL Server service
(MSSQLSERVER). Because the agent service depends on the SQL Server service, you need to stop the
agent service first, followed by the SQL Server service. You can use the Sort-Object cmdlet to reverse
the order of the services. You also need to add a 15-second delay between each stop attempt to ensure
that each operation is given enough time to process:

Get-WmiObject -class Win32_Service | Where-Object{ ($_.Name -like ‘*SQL*’) -and
($_.State -eq ‘Running’) } | Sort-Object Name -desc | ForEach-Object -process {
$_.StopService(); Start-Sleep -s 15 }

The 0 return values (ReturnValue) shown in Figure 8-20 indicate that the services stopped successfully.

To verify that all the SQL Server–related services have stopped, execute the previous command
again:

Get-WmiObject -class Win32_Service | Where-Object{ ($_.Name -like ‘*SQL*’) -and
($_.State -eq ‘Running’)}

176

Chapter 8: Working with WMI

Figure 8-20

As shown in Figure 8-21, none of the SQL Server–related services are running.

Figure 8-21

The ChangeStartMode method modifies the start mode of a service. This method takes one parameter:
StartMode. Possible values for the parameter include Boot, System, Automatic, Manual, and Disabled.
For example, if you would like to change the start mode of the SQL Server Agent service of the default
instance from Manual to Auto (so the agent starts automatically at system startup), run the following
command:

(Get-WmiObject -class Win32_Service | Where-Object{ ($_.Name –like
‘SQLSERVERAGENT’) }).ChangeStartMode(’Automatic’)

177

Chapter 8: Working with WMI

#To confirm that the StartMode has been changed.
Get-WmiObject -class Win32_Service | Where-Object{ ($_.Name -like ‘SQLSERVERAGENT’) }

As shown in Figure 8-22, after the command is executed, the start mode of the agent service changes from
Manual to Auto.

Figure 8-22

Another method, Change, can be used to modify the start mode of a service as well. This method can
also modify other properties of a service, including display name, binary file path, error control, service
account, loading order, and service dependencies. Here is the definition of the method:

System.Management.ManagementBaseObject Change(System.String DisplayName,
System.String PathName, System.Byte ServiceType, System.Byte ErrorControl,
System.String StartMode, System.Boolean DesktopInteract, System.String StartName,
System.String StartPassword, System.String LoadOrderGroup, System.String[]
LoadOrderGroupDependencies, System.String[] ServiceDependencies)

You can use this method to change the service account of the SQL Server. Currently, the SQL Server
service for the default instance is running under the PowerUser account PowerDomain\SqlService, but
you can change it to the local system account temporarily. If you want to populate the parameters, you
need to get the parameter collection for the Change method. The raw view, psbase, of the service object
provides a way to get the native methods for WMI, including the GetMethodParameters method to get
the parameter collection, and another method, InvokeMethod, to invoke the Change method on the service
object:

Gets the SQL Server service object
$service = Get-WmiObject -class Win32_Service | Where-Object{ ($_.Name –eq
‘MSSQLSERVER’) }
Gets the parameter collection of the Change method for the service object
$params = $service.psbase.GetMethodParameters(’Change’)
Set the new service account

178

Chapter 8: Working with WMI

$params["StartName"] = [String] "LocalSystem"
Apply the Change method to the SQL Server service object
$result= $service.psbase.InvokeMethod(’Change’, $params, $Null)
"The return code of the Change method is " + $result["ReturnValue"]

To verify that the service account has been changed, run the following command:

Get-WmiObject -class Win32_Service | Where-Object{ ($_.Name -like ‘MSSQLSERVER’) } |
select StartName

Figure 8-23 shows that the SQL Server service account has been changed to LocalSystem.

Figure 8-23

Working with Processes
The Win32 Process class represents processes on an operating system. To get a list of processes on your
local computer, run the following command:

Get-WmiObject -class Win32_Process

There are many properties associated with each process. Some of the properties are static and don’t
change after the process starts, such as those that provide the process identifier, the underlying binary
file, and the operating system of the process. Following is a list of static properties:

❑ Caption: Contains a short description of the process

❑ CommandLine: Contains the command line used to start a specific process. For example,
for the SQL Server service for the default instance installed in the default directory, it is
C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\Binn\sqlservr.exe.
–sMSSQLSERVER.

❑ CreationDate: Contains the date the process begins executing.

❑ CSName: Contains the name of the computer system on which the process is running.

❑ Description: Contains a detailed description of the process, if available.

❑ ExecutablePath: Contains the path to the executable file of the process. It doesn’t include the
parameters used to start the process.

179

Chapter 8: Working with WMI

❑ Name: Contains the name for the process.

❑ OSName: Contains the name of the operating system on which the process is running — for
example, Microsoft Windows Vista Ultimate.

❑ ParentProcessId: Contains the unique identifier of the process that invokes the process. The
parent process for SQL Server–related services is always the Service Control Manager process,
services.exe.

❑ Priority: Contains the scheduling priority of a process within an operating system. The higher
the value, the higher priority a process receives. Priority values can range from 0 (zero), the low-
est priority, to 31, the highest priority. The default priority for SQL Server–related services is 8.

❑ ProcessId: Contains the process identifier.

❑ WindowsVersion: Contains the version of Windows in which the process is running — for
example, 6.0.6001 for Windows Vista Service Pack 1 Build 6001.

Let’s first look at the values of these properties for the process sqlservr.exe, the SQL Server service. The
following command filters the service with the Where-Object cmdlet, and then uses the Select-Object
to select its properties:

Get-WmiObject -class Win32_Process | Where-Object{ ($_.Name –eq ‘sqlservr.exe’) } |
Select-Object Caption, CommandLine, CreationDate, CSName, Desciption, ExecutablePath,
Name, OSName, ParentProcessId, Priority, ProcessId, WindowsVersion

The CommandLine contains the command to start the default instance (see Figure 8-24).

Figure 8-24

In this case, the instance was started at 22:35 on January 9. It is running under the process ID 2656 on the
Windows Vista machine PowerPC. The parent process, services.exe, is running under the process ID
716. The priority base for the SQL Server process is 8, which is normal.

Some properties of the Win32 Process class are dynamic. They provide detailed usage information about
the system resources for the process. This information can be very useful for troubleshooting performance
problems.

180

Chapter 8: Working with WMI

Following are the CPU-related properties of the Win32 Process class:

❑ KernelModeTime: CPU time in kernel mode, in 100 nanosecond units. If this information is not
available, then the value is 0.

❑ UserModeTime: CPU time in user mode, in 100 nanosecond units. If this information is not avail-
able, then the value is 0.

❑ ThreadCount: Number of active threads in a process. Each running process has at least one
thread.

❑ HandleCount: Total number of handles currently opened by all the threads in this process. A
handle is used to examine or modify the system resources. Each handle has an entry in a table
that is maintained internally. Entries contain the addresses of the resources, and data to identify
the resource type.

Before looking at the memory-related properties of the Win32 Process class, let’s look at how the mem-
ory for a process works. The set of memory pages visible to the process in physical RAM is the working
set of a process. These pages are resident, and available for an application to use without triggering a
page fault. However, the operating system uses paging files as virtual memory, and makes the virtual
memory available to all processes as if it were real RAM.

The operating system, in coordination with the CPU, saves portions of RAM to the paging file and loads
portions of the paging file back into RAM as the running applications need them. Pages are swapped
between memory and paging files, which result in page faults. A page fault can be soft or hard. If the
faulted page is found elsewhere in physical memory, then it is a soft page fault. A hard page fault occurs
when a process requires code or data that is not in its working set or elsewhere in physical memory and
must be retrieved from disk. A soft page fault has much less effect on performance compared to a hard
page fault. When the system does not have enough memory for the working set size the process needs,
thrashing and extensive paging occur.

The virtual address space for a process is the set of virtual memory addresses that it can use. Using
virtual address space does not necessarily imply corresponding use of either disk or main memory pages.
However, virtual space is finite; if a process uses too much, it might not be able to load libraries.

Following are the memory-related properties:

❑ MaximumWorkingSetSize: Maximum working set size of the process, in kilobytes.

❑ MinimumWorkingSetSize: Minimum working set size of the process, in kilobytes.

❑ PeakWorkingSetSize: Peak working set size of a process.

❑ WorkingSetSize: Amount of memory, in bytes, that a process needs to execute efficiently (for an
operating system that uses page-based memory management).

❑ PageFaults: Number of page faults that a process generates. This includes both soft and hard
page faults.

❑ PageFileUsage: Amount of page file space that a process is using currently, in kilobytes.

❑ PeakPageFileUsage: Maximum amount of page file space used during the life of a process, in
kilobytes.

❑ PeakVirtualSize: Maximum virtual address space a process uses at any one time.

❑ PrivatePageCount: Current number of pages allocated that are only accessible to the process
represented by this Win32 Process instance.

181

Chapter 8: Working with WMI

❑ QuotaNonPagedPoolUsage: Quota amount of nonpaged pool usage for a process.

❑ QuotaPagedPoolUsage: Quota amount of paged pool usage for a process.

❑ QuotaPeakNonPagedPoolUsage: Peak quota amount of nonpaged pool usage for a process.

❑ QuotaPeakPagedPoolUsage: Peak quota amount of paged pool usage for a process.

❑ VirtualSize: Current size of the virtual address space that a process is using, not the physical or
virtual memory actually used by the process.

Following are the I/O–related properties of the Win32 Process class:

❑ OtherOperationCount: Number of I/O operations performed that are not read or write
operations.

❑ OtherTransferCount: Amount of data transferred during operations that are not read or write
operations.

❑ ReadOperationCount: Number of read operations performed.

❑ ReadTransferCount: Amount of data read, in bytes.

❑ WriteOperationCount: Number of write operations performed.

❑ WriteTransferCount: Amount of data written, in bytes.

In Chapter 7, you saw the output from the Get-Process cmdlet. Actually, each performance counter in
the output can be mapped to one or two properties from the Win32 Process class. The following table
shows the mappings.

Get-Process W32 Process

Handles HandleCount

NPM(K) QuotaNonPagedPoolUsage

PM(K) PageFileUsage

WS(K) WorkingSetSize

VM(M) VirtualSize

CPU(s) KernelModeTime + UserModeTime

The following command shows the output from the Get-Process cmdlet and the properties from the
Win32_Process for the sqlservr.exe process.

Get-Process | Where-Object{$_.Name -eq ‘sqlservr’ }
Get-WmiObject -class Win32_Process | Where-Object{$_.Name -eq ‘sqlservr.exe’} |
foreach -process {"Handles: " + $_.HandleCount; "NPM(K): " + $_.QuotaNonPagedPool
Usage; "PM(K): " + $_.PageFileUsage; "WS(K): " + $_.WorkingSetSize/1024; "VM(M): " +
$_.VirtualSize/1024/1024; "CPU(s): " +
($_.KernelModeTime/10e6+$_.UserModeTime/10e6).ToString(); "Id: " + $_.ProcessId;
"ProcessName: " + $_.Name}

182

Chapter 8: Working with WMI

As shown in Figure 8-25, you can get the same resource usage information from both the Get-Process
cmdlet and the Win32_Process class.

Figure 8-25

To get a list of processes running on a remote computer named PowerServer3, run the following
command:

Get-WmiObject –computerName PowerServer3 -class Win32_Process

Figure 8-26 shows part of the output.

The Win32 Process class also provides methods to manage processes. Two of them are listed here.

Method Description

SetPriority Changes the execution priority of a process

Terminate Terminates a process and all of its threads

The SetPriority method changes the execution priority of a process. This method takes only one param-
eter, priority. Possible values for the parameter are listed in the following table.

Priority Description

Idle Specified for a process with threads that run only when the system is
idle.

Normal Specified for a process with no special scheduling needs.

High Priority Specified for a process that performs time-critical tasks that must be
executed immediately.

Real Time Specified for a process with the highest priority possible. The threads of
this process preempt the threads of any other processes, including other
OS processes that perform important tasks.

183

Chapter 8: Working with WMI

Figure 8-26

The default priority for the SQL Server service is 8. However, you can use this method to promote the
priority of the SQL Server service to High, a Windows scheduling priority higher than other processes
on the same computer. The following commands promote the priority of the SQL Server service of the
default instance on the local computer:

$sqlprocess = Get-WmiObject -class Win32_Process | Where-Object{$_.Name -eq
‘sqlservr.exe’ -and $_.CommandLine -like ‘*-sMSSQLSERVER’}
"Priority of the process of the default SQL Server instance is " +
$sqlprocess.Priority $sqlprocess.SetPriority(128)
$sqlprocess = Get-WmiObject -class Win32_Process | Where-Object{$_.Name -eq
‘sqlservr.exe’ -and $_.CommandLine -like ‘*-sMSSQLSERVER’}
"Priority of the process of the default SQL Server instance is " +
$sqlprocess.Priority

Note that if you do not have a default instance, but only a named instance, on your computer, then you
should update MSSQLSERVER with the name of the named instance before running the commands. For
example, for the named instance INSTANCE1, the first command line should be as follows:

184

Chapter 8: Working with WMI

$sqlprocess = Get-WmiObject -class Win32_Process | Where-Object{$_.Name -eq
‘sqlservr.exe’ -and $_.CommandLine -like ‘*-sINSTANCE1’}

As shown in Figure 8-27, you first get the process object for the SQL Server service of the default instance.

Figure 8-27

Then you raise the priority of the process from Normal to High using the SetPriority method. The
priority number increases from 8 to 13 after the change. Actually, the commands have the same effect
as enabling the ‘‘priority boost’’ option on the SQL Server. However, the SetPriority method changes
only the process the SQL Server service is currently running on, whereas the option affects any process
the SQL Server service is associated with after it is enabled.

exec sp_configure ‘priority boost’, 1
reconfigure

The Terminate method terminates a process and all of its threads. For example, to terminate a running
Notepad process, you first need to determine its process ID. Then pass the ID as a parameter to the
method.

Open a Notepad window and run the following command to terminate the Notepad process:

$proc=Get-WmiObject -class Win32_Process | Where-Object{$_.name -eq ‘notepad.exe’}
$proc.Terminate($proc.ProcessID)

As shown in Figure 8-28, the Terminate method executed with a success code of 0. You should have
noticed that the Notepad window closed.

Configuration Manager should be used to stop SQL Server–related services. However, in rare cases, a
SQL Server instance becomes unresponsive. For example, suppose a User Mode Scheduler inside SQL
Server hangs and you are unable to stop the service with Configuration Manager. In this case, you need

185

Chapter 8: Working with WMI

to terminate the SQL Server process directly. The following commands filter out the SQL Server service
for the default instance based on the Name and CommandLine properties, and then invoke the Terminate
method on the service:

$proc=Get-WmiObject -class Win32_Process | Where-Object{$_.Name -eq ‘sqlservr.exe’
-and $_.CommandLine -like ‘*-sMSSQLSERVER’}
$proc.Terminate($proc.ProcessID)

Figure 8-28

If there are multiple instances on the same computer, then you certainly don’t want to stop the healthy
instances by accident. You need to specify the name of the instance you are trying to stop in the
CommandLine property as shown in the preceding example.

Working with Environment Variables
The Win32_Environment WMI class represents system environment settings on a Windows com-
puter system. Querying this class returns environment variables found under the registry key
HKLM\System\CurrentControlSet\Control\Sessionmanager\Environment.

The properties of the class are as follows:

❑ Caption: Short description (one-line string) of the environment variable.

❑ Description: Description of the environment variable.

❑ InstallDate: When the environment variable was installed.

❑ Name: Name of a Windows-based environment variable.

❑ SystemVariable: Indicates whether the variable is a system variable. A system variable is set by
the operating system, and is independent from user environment settings.

❑ UserName: Name of the owner of the environment setting. It is set to <SYSTEM> for settings that
are specific to the system, and <DEFAULT> for default user settings.

❑ VariableValue: Value of the variable.

186

Chapter 8: Working with WMI

You can access all the variables and their values by executing the following command:

Get-WmiObject -class Win32_Environment | Select-Object Name, VariableValue

The output is shown in Figure 8-29.

Figure 8-29

You can get all the properties and methods of the Win32 Environment class by passing the environment
variable objects in a pipeline to the Get-Member cmdlet:

Get-WmiObject -class Win32_Environment | Get-Member

As shown in Figure 8-30, there are other properties you can access.

You can use the Select-Object cmdlet to get the owner of the variables from the Win32 Environment
class:

Get-WmiObject -class Win32_Environment | Select-Object Name, UserName, SystemVariable

As shown in Figure 8-31, all the system variables are owned by SYSTEM.

You can first filter the variable objects returned by Get-WmiObject with the Where-Object cmdlet to get
the TMP setting for the user PowerDomain\PowerUser:

Get-WmiObject -class Win32_Environment | Where-Object {$_.Name -eq "TMP" -and
$_.Username -eq "PowerDomain\PowerUser"}

187

Chapter 8: Working with WMI

Figure 8-30

Figure 8-31

188

Chapter 8: Working with WMI

The output is shown in Figure 8-32.

Figure 8-32

The Delete method deletes a variable from the system environment. For example, to delete the variable
TMP, you can filter the variable object as shown in the previous command, and then invoke the Delete
object on the object. However, before deleting a variable, ensure that the OS and applications are not
using it. Otherwise, some applications might not work correctly.

$a= Get-WmiObject -class Win32_Environment| Where-Object {$_.Name -eq "TMP"
-and $_.Username -eq "PowerDomain\PowerUser"}
$a.Delete()

In order to access system variables on a remote machine, you can add an additional parameter:
–computerName:

Get-WmiObject -class Win32_Environment –computerName PowerServer3 | Select-Object
Name, UserName, SystemVariable

The environment variables on the remote computer PowerServer3 are shown in Figure 8-33.

Figure 8-33

189

Chapter 8: Working with WMI

Working with the Registr y
The StdRegProv class contains methods that manipulate system registry keys and values. On Windows
Server 2003, Windows XP, Windows 2000, Windows NT 4.0, and Windows Me/98/95, StdRegProv is
available only in the root\default namespace. On Windows Vista and Windows Server 2008, StdRegProv
is preinstalled in the WMI namespaces root\default and root\cimv2.

Now check all the methods that are available from the class StdRegProv:

$Reg = [WMIClass]"root\default:stdRegProv"
$Reg | Get-Member

Figure 8-34 shows the results.

Figure 8-34

Registry keys are classified into six different categories (hives) identified by the following unique registry
hive constants. You need these unique numbers to access the right keys and their values.

190

Chapter 8: Working with WMI

Hive Decimal Value Hexidecimal Value

HKEY CLASSES ROOT 2147483648 0x80000000

HKEY CURRENT USER 2147483649 0x80000001

HKEY LOCAL MACHINE 2147483650 0x80000002

HKEY USERS 2147483651 0x80000003

HKEY CURRENT CONFIG 2147483653 0x80000005

HKEY DYN DATA 2147483654 0x80000006

To get a list of service names listed as subkeys under the SYSTEM\CurrentControlSet\Services key in
the HKEY LOCAL MACHINE registry hive, you can use the Enumkey method. This method accepts a
hive constant and a registry path. In this case, you pass the value of the HKEY LOCAL MACHINE hive
and the path SYSTEM\CurrentControlSet\Services, as shown in the following command:

$Reg = [WMIClass]"root\default:stdRegProv"
$HKEY_LOCAL_MACHINE = 2147483650 $strKeyPath = "SYSTEM\CurrentControlSet\Services"
$services=$Reg.EnumKey($HKEY_LOCAL_MACHINE,$strKeyPath)
$services.sNames

Figure 8-35 shows part of the services.

Figure 8-35

191

Chapter 8: Working with WMI

You may want to query certain information about SQL Server, such as what network libraries are
installed and whether they are enabled. The server network protocols for the default instance are
listed as subkeys under SOFTWARE\Microsoft\Microsoft SQL Server\MSSQL10.MSSQLSERVER\
MSSQLServer\SuperSocketNetLib in the HKEY LOCAL MACHINE registry hive. You can use the
EnumKey method to retrieve all the protocol subkeys. For each protocol, the Enabled registry value
of each protocol indicates whether the protocol is enabled (1) or disabled (0). The value is of type
REG DWORD, so you need to use the GetDWORDValue method to get it:

$Reg = [WMIClass]"root\default:stdRegProv"
$HKEY_LOCAL_MACHINE = 2147483650
$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL
Server\MSSQL10.MSSQLSERVER\MSSQLServer\SuperSocketNetLib"
$netlib=$Reg.EnumKey($HKEY_LOCAL_MACHINE,$strKeyPath)
$netlib.sNames | Foreach-Object { $_ + "=" +
$Reg.GetDWORDValue($HKEY_LOCAL_MACHINE,$strKeyPath+’\’+ $_,"Enabled").uValue}

As shown in Figure 8-36, both the Named Pipes and TCP/IP protocols are enabled.

Figure 8-36

To get the registry values under a key, you can use the EnumValues method. For example, to obtain all the
values under the Named Pipes registry key, use the following commands (the sNames property contains
an array of named registry values):

$Reg = [WMIClass]"root\default:stdRegProv"
$HKEY_LOCAL_MACHINE = 2147483650
$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL
Server\MSSQL10.MSSQLSERVER\MSSQLServer\SuperSocketNetLib\Np"
$namedpipe=$Reg.EnumValues($HKEY_LOCAL_MACHINE,$strKeyPath)
$namedpipe.sNames

Figure 8-37 shows three named nondefault values under the Named Pipes key, which includes the
Enabled key shown in the previous example.

Figure 8-37

192

Chapter 8: Working with WMI

Figure 8-38 shows the same values in the Registry Editor.

Figure 8-38

The name of the named pipe and the TCP/IP port number are of type REG SZ, which is a string. You can
obtain them with the GetStringValue method using the following commands:

$Reg = [WMIClass]"root\default:stdRegProv"
$HKEY_LOCAL_MACHINE = 2147483650

$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL
Server\MSSQL10.MSSQLSERVER\MSSQLServer\SuperSocketNetLib\Np"
$pipeName=$reg.GetStringValue($HKEY_LOCAL_MACHINE,$strKeyPath,"Pipename").svalue
$pipeName

$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL
Server\MSSQL10.MSSQLSERVER\MSSQLServer\SuperSocketNetLib\Tcp\IPAll"
$TcpPort=$reg.GetStringValue($HKEY_LOCAL_MACHINE,$strKeyPath,"TcpPort").svalue
$TcpPort

The pipe name is \\.\pipe\sql\query, and the TCP/IP port number is 1433 (see Figure 8-39).

Figure 8-39

Now try to create a new value name and value data under SOFTWARE\Microsoft\MSSQLServer\
MSSQLServer\SuperSocketNetLib\Np in the registry. The CreateKey method creates the subkey and

193

Chapter 8: Working with WMI

the SetStringValue method adds a registry value of type REG SZ. The new registry value is called
TestValueName, and its value is TestValue. You can verify the creation of the new registry value by
querying it with the GetStringValue method:

$HKEY_LOCAL_MACHINE = 2147483650
$Reg = [WMIClass]"root\default:stdRegProv"
$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL
Server\MSSQL10.MSSQLSERVER\MSSQLServer\SuperSocketNetLib\Np"
$strValueName = "TestValueName"
$strValue = "TestValue"
$Reg.CreateKey($HKEY_LOCAL_MACHINE,$strKeyPath)
$Reg.SetStringValue($HKEY_LOCAL_MACHINE,$strKeyPath,$strValueName,$strValue)
$Reg.GetStringValue($HKEY_LOCAL_MACHINE,$strKeyPath,"TestValueName").svalue

As shown in Figure 8-40, a new registry key value, TestValueName, has been created.

Figure 8-40

If you want to delete this key, use the DeleteValue method:

$Reg.DeleteValue($HKEY_LOCAL_MACHINE, $strKeyPath, "TestValueName")

Figure 8-41 shows the 0 return code, which indicates that the value was deleted successfully.

194

Chapter 8: Working with WMI

Figure 8-41

Summary
This chapter discussed the WMI model, and worked with different WMI classes to manage Windows
event logs, services, processes, environment variables, and the registry. In the next two chapters, we will
use the WMI classes to manage SQL Server configurations and server events.

195

WMI Provider for
Configuratio Management

Since the release of Microsoft SQL Server 2005, Microsoft has included two WMI providers for
SQL Server: the WMI Provider for Configuration Management to manage SQL Server services and
network connectivity, and the WMI Provider for Server Events, to manage SQL Server events. This
chapter illustrates how to access the SQL Server 2008 WMI providers using Windows PowerShell,
and how to perform administrative tasks using the WMI Provider for Configuration Management.
The WMI Provider for Server Events is explained in detail in Chapter 10.

The WMI Provider for Configuration Management is a published layer that is used with the SQL
Server Configuration Manager snap-in for the Microsoft Management Console (MMC) and the
Microsoft SQL Server Configuration Manager. By writing a Windows PowerShell script, you can
connect to the Configuration Manager and take advantage of all the services it provides.

In this chapter, you will learn how to manage SQL Server services, client and server protocols, and
server aliases, both locally and remotely, using Windows PowerShell and the WMI Provider for
Configuration Management. As you know, the Configuration Manager can be used to manage only
local SQL Server instances. Therefore, the approach introduced in this chapter is far more flexible.

This chapter covers the following topics:

❑ Managing SQL Server services

❑ Managing client network protocols

❑ Managing SQL Server client aliases

❑ Managing server network protocols

❑ Changing FILESTREAM settings

❑ Changing SQL Server advanced properties

Chapter 9: WMI Provider for Configuratio Management

Managing SQL Ser ver Ser vices
The WMI Provider for Configuration Management provides access to WMI objects in the
root\Microsoft\SqlServer\ComputerManagement namespace for SQL Server 2005, and
the root\Microsoft\SqlServer\ComputerManagement10 namespace for SQL Server 2008. Because
objects are instances of classes, we’ll look at the classes available under the namespace for SQL Server
2008. As stated in Chapter 8, the extension classes (the classes without a prefix of two underscores)
are technology-specific classes. This chapter covers only the extension classes that are specific to SQL
Server. As shown in previous chapters, you can use the Get-WmiObject cmdlet to connect with WMI.
The following command uses the –list parameter to list all the classes under the namespace, and the
Where-Object cmdlet to filter the extension classes:

Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10 –list | Where-
Object {-not ($_.Name -like ‘___*’)}

Figure 9-1 shows the extension classes. As suggested by their names, they can be used to instantiate
objects for client network protocols, server network protocols, SQL Server services, and server aliases.

Figure 9-1

The SqlService class represents the objects for SQL services. To view a list of available services on
your local computer, you can pass the class name SqlService to the -class parameter, and then use the
Select-Object cmdlet to get the name, type, state, and process ID of each service. By default, the services
are returned in a list. For easy viewing, you can use the Format-Table cmdlet to format the output as a
table:

Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10 -class
SqlService | Select-Object ServiceName, DisplayName, SQLServiceType, State,
ProcessId | Format-Table -wrap

198

Chapter 9: WMI Provider for Configuratio Management

Figure 9-2 shows that the local computer has a default instance MSSQLSERVER and a named instance
INSTANCE1 installed. The command returns 10 service instances representing SQL Server Integration
Services, SQL Server Analysis Service, SQL Server Service, SQL Server Full-Text Filter Daemon
Launcher Service, SQL Server Reporting Services, SQL Server Agent Service, and SQL Server Browser
Service.

Figure 9-2

As you can see, each service has a SQLServiceType. The service types are defined in Table 9-1.

The running state of each service is also represented by a value, as defined in Table 9-2.

Figure 9-2 shows that the SQL Server Service for the default instance MSSQLSERVER, the SQL Full-Text
Filter Daemon Launcher service MSSQLFDLauncher, and the SQL Server Browser service SQLBrowser,
are running.

To see all the methods that you can apply to the service instances, run the following command.

Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10 -class
SqlService | Get-Member -MemberType method

You can use the methods shown in Figure 9-3 to manage the state of the services and change the service
accounts.

199

Chapter 9: WMI Provider for Configuratio Management

Table 9-1: SQL Server Service Types

Type Description

1 SQL Server service

2 SQL Server Agent service

4 SQL Server Integration Services

5 SQL Server Analysis Services

6 SQL Server Reporting Services

7 SQL Server Browser service

8 NsService is the SQL Server Notification Services service. However, this
service is not available in SQL Server 2008.

9 SQL Server Full-Text Filter Daemon

Table 9-2: Service States

State Description

1 Stopped. The service is stopped.

2 Start Pending. The service is waiting to start.

3 Stop Pending. The service is waiting to stop.

4 Running. The service is running.

5 Continue Pending. The service is waiting to continue.

6 Pause Pending. The service is waiting to pause.

7 Paused. The service is paused.

You can change the SQL Server service account from the local system account to a domain account,
PowerDomain\SqlService, and then restart the service for the change to take effect. A sample of such
a script is shown in the following example. The script first uses Get-WmiObject to instantiate an object
associated with the default SQL Server service, MSSQLSERVER. Then it invokes the SetServiceAccount
method of the object to change the service account to the domain account PowerDomain\SqlService.
After the service account has been changed, it invokes the StopService and StartService methods to
stop and restart the SQL Server service:

$strUserName = "PowerDomain\SqlService"
Password for the PowerDomain\SqlService account

200

Chapter 9: WMI Provider for Configuratio Management

$strPassword= "P@ssw0rd"
$sqlservice = Get-WmiObject –namespace
root\Microsoft\SqlServer\ComputerManagement10
-class SqlService –filter "ServiceName=’MSSQLSERVER’"

$sqlservice.SetServiceAccount($strUserName, $strPassword)

$sqlservice.StopService()

$sqlservice.StartService()

Figure 9-3

The output is shown in Figure 9-4. A return value of 0 means that the operation was successful.

If you have only named instances on your computer, you will need to change the –filter parameter
in the Get-WmiObject cmdlet before running the script. For example, for a named instance INSTANCE1,
you should change the filter to "ServiceName=’MSSQL`$INSTANCE1’. The backtick character (`) is used
to escape the dollar sign ($) character in the service name.

As demonstrated in the previous chapters, WMI enables system components to be controlled remotely.
The -computerName flag is used to specify the name of the remote computer to connect with. The follow-
ing example shows how to change a named instance called CH0DE1 on a remote computer DEMOPC. You
can change the first line of the preceding script as follows:

$sqlservice = Get-WmiObject –computerName DEMOPC –namespace
root\Microsoft\SqlServer\ComputerManagement10 -class SqlService –filter
"ServiceName=’MSSQL`$CH0DE1’"

For a local computer, you can omit the –computerName parameter and use ‘‘.’’ or ‘‘localhost’’ as its
value.

A complete sample script can be found in ManageSQLServerService.ps1 under the C:\DBAScripts direc-
tory. This directory is going to hold all of your administrative scripts, and will be the default location
from which your scripts run. This script uses Out-Null to suppress the informational messages returned
by the SetServiceAccount, StopService, and StartService methods. As shown in Figure 9-5, this
script was executed to change the SQL Server service account. Notice that no informational messages
were printed out.

201

Chapter 9: WMI Provider for Configuratio Management

Figure 9-4

Figure 9-5

You can also change the start mode of a SQL Server service with the SetStartMode method. If the SQL
Server Agent service is currently set to start manually but you want it to start automatically to support
jobs and alerts, you can run the AutostartSQLServerAgent.ps1 script shown here:

$strComputer = "."

$sqlservice = Get-WmiObject –computerName $strComputer –namespace
root\Microsoft\SqlServer\ComputerManagement10 `
-class SqlService –filter "ServiceName=’SQLSERVERAGENT’"
$sqlservice.SetStartMode(2)

202

Chapter 9: WMI Provider for Configuratio Management

The script first uses Get-WmiObject to instantiate an object associated with the default SQL Server Agent
service, SQLSERVERAGENT. It then invokes the SetStartMode method of the object to change the
start mode to 2. The parameter 2 corresponds to the Auto start mode. All the start modes are defined
in Table 9-3.

Table 9-3: Service Start Modes

Start Mode Description

2 Service is started automatically

3 Service is started manually

4 Service is disabled

Note that if you only have named instances on your computer, you need to change the –filter parame-
ter in the Get-WmiObject cmdlet before running the script. For example, for a named instance INSTANCE1,
you should change the filter to "ServiceName=’ SQLAgent`$INSTANCE1’". The backtick character (`) is
used to escape the dollar sign ($) character in the service name.

As shown in Figure 9-6, the script was executed to change the start mode of the SQL Server Agent for the
default instance. The 0 value was returned from successfully executing the SetStartMode method.

Figure 9-6

Managing Client Networ k Protocols
The ClientNetworkProtocol class represents the objects for client network protocols. To see the list of
protocols, you can use the Get-WmiObject cmdlet and pass the class name ClientNetworkProtocol to
the –class parameter. Then use the Select-Object cmdlet to get the protocol names and their order:

Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10 -class
ClientNetworkProtocol | Select-Object ProtocolName, ProtocolDisplayName,
ProtocolOrder

203

Chapter 9: WMI Provider for Configuratio Management

The ProtocolOrder column, as shown in Figure 9-7, specifies the order of the client network protocol
that is currently referenced. In this case, when connecting with a SQL Server instance, the Microsoft SQL
Server client first uses the Shared Memory protocol.

Figure 9-7

If the first protocol doesn’t work (i.e., the connection is remote), the client tries the TCP/IP protocol next,
and then the Named Pipes protocol. The 0 value of the ProtocolOrder property of the VIA protocol means
it is disabled.

To see all the methods you can apply to the client network protocol instances, use the Get-Member cmdlet
to get the members of type Method. Then use the Select-Object cmdlet to get only the names of the
methods:

Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10 -class
ClientNetworkProtocol | Get-Member -memberType Method | Select-Object Name

Figure 9-8 shows the list of methods available. These methods can be used to select the protocol that is in
the next position in the list of protocols, to disable or enable a protocol, and to change the protocol order.

Figure 9-8

For example, if you want to disable the Named Pipes protocol, you can use the Get-WmiObject method to
instantiate the objects for the client network protocols, and filter the Named Pipes protocol object with the
ProtocolName property. Then invoke the SetDisable method on the object:

$clientprotocol=Get-WmiObject –namespace
root\Microsoft\SqlServer\ComputerManagement10 -class ClientNetworkProtocol -filter

204

Chapter 9: WMI Provider for Configuratio Management

"ProtocolName=’np’"
$clientprotocol.SetDisable()

The 0 return value shown in Figure 9-9 indicates that the Named Pipes protocol was disabled successfully.

Figure 9-9

You can run the following command again for verification:

Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10 -class
ClientNetworkProtocol | Select-Object ProtocolName, ProtocolDisplayName,
ProtocolOrder

As shown in Figure 9-10, the order of the Named Pipes protocol changed to 0 (i.e., it is disabled).

Figure 9-10

If you’d like to re-enable the Named Pipes protocol and place it above the TCP/IP protocol, which has an
order of 2 in the list, you can simply use the SetOrderValue method to set the order of the Named Pipes
protocol to 2, to take the place of the TCP/IP protocol:

$clientprotocol=Get-WmiObject –namespace root\Microsoft\SqlServer
\ComputerManagement10 -class ClientNetworkProtocol -filter "ProtocolName=’np’"
$clientprotocol.SetOrderValue(2)

205

Chapter 9: WMI Provider for Configuratio Management

To verify the result, sort all the client network protocols by their order:

Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10 -class
ClientNetworkProtocol | Select-Object ProtocolName, ProtocolDisplayName,
ProtocolOrder | Sort-Object ProtocolOrder

Figure 9-11 shows that the Named Pipes protocol is now above the TCP/IP protocol.

Figure 9-11

Some settings are specific to each protocol. For example, the TCP/IP protocol must define a
default listening port. The properties specific to each protocol can be accessed through the
ClientNetworkProtocolProperty class. The following command instantiates all the objects of this class
with the Get-WmiObject cmdlet, and then uses the Select-Object cmdlet to get the property names and
their associated protocol names:

Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10 -class
ClientNetworkProtocolProperty | Select-Object PropertyName, ProtocolName

As shown in Figure 9-12, the TCP/IP protocol owns the first three properties.

If you want to change the default port of the TCP/IP protocol from 1433 to 7001, you can use the
SetNumericalValue method of the ClientNetworkProtocolProperty class. A sample script is shown
here:

$strComputer = "."

$protocolproperty=Get-WmiObject –computerName $strComputer –namespace
root\Microsoft\SqlServer\ComputerManagement10 –class ClientNetworkProtocolProperty
-filter "PropertyName=’Default Port’"

$protocolproperty.SetNumericalValue(7001)

206

Chapter 9: WMI Provider for Configuratio Management

Figure 9-12

Figure 9-13 shows the output from running the above commands.

Figure 9-13

To verify that the default port has been changed, you can run this command:

Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10 -class
ClientNetworkProtocolProperty -filter "PropertyName=’Default Port’"

Figure 9-14 shows that the default TCP/IP port has been changed to 7001. The complete script is in
ChangeTCPIPDefaultPort.ps1.

Managing SQL Ser ver Client Aliases
SQL Server client aliases make user connections easier, faster, and more convenient. Each alias saves all
the information you need to connect to a SQL Server, such as the server name and the client protocol
used to connect to a server. By using an alias, you do not need to enter the information each time you
connect. You can also use an easy-to-remember nickname for your application that is different from the
actual server name.

207

Chapter 9: WMI Provider for Configuratio Management

Figure 9-14

The SqlServerAlias class represents the objects for SQL Server client aliases. To view a list of aliases
defined on the local computer, you again use the Get-WmiObject cmdlet, but then pass the class name
SqlServerAlias to the class parameter:

Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10 -class
SqlServerAlias

As shown in Figure 9-15, only a SQL Server client alias CH0DE1 is defined on the local computer, which
points to a named instance CH0DE1 on a remote computer DEMOPC that listens on TCP/IP port 7001. To
manage an alias on a remote computer, use the –computerName parameter to specify the remote computer
name.

Figure 9-15

208

Chapter 9: WMI Provider for Configuratio Management

The SqlServerAlias class does not define any methods. It inherits the methods from its parent class,
ManagementObject. The Delete method of the ManagementObject class can be used to delete an existing
alias. For example, if you want to delete the alias CH0DE1 above, you can use the Delete method. The
backtick character (`) in the following script is used to concatenate the script lines:

$strComputer = "."
Name of the alias
$strAliasName = "CH0DE1"

$oldalias=Get-WmiObject –computerName $strComputer -namespace
root\Microsoft\SqlServer\ComputerManagement10 `
-class SqlServerAlias -filter "AliasName=’$strAliasName’"

$oldalias.Delete()

The complete script DeleteClientAlias.ps1 is saved in the script directory C:\DBAScripts. In
Figure 9-16, the script is run to delete the alias. Then the previous command is run to verify the deletion
of the alias. Notice that no aliases are returned.

C:DBAScripts\DeleteClientAlias.ps1
Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10 -class
SqlServerAlias

Figure 9-16

Get-WmiObject can only be used to manage the existing SQL Server client aliases. To cre-
ate a new alias, you need to use the New-Object cmdlet to create an alias object from the
corresponding .NET class, Microsoft.SqlServer.Management.Smo.Wmi.ServerAlias. The
Microsoft.SqlServer.Management.Smo namespace contains classes that represent the core
SQL Server Management Objects (SMOs). You will find more examples on SMO in Chapter 13.
The Microsoft.SqlServer.Management.Smo.Wmi.ServerAlias class is contained in the assem-
bly Microsoft.SqlServer.SqlWmiManagement.dll for SQL Server 2008, and in the assembly
Microsoft.SqlServer.Smo.dll for SQL Server 2005.

Before PowerShell can call a .NET class, the assembly containing the .NET class must be loaded first. By
default, PowerShell loads a small list of assemblies. To get a list of loaded assemblies, you can use the
GetAssemblies method of the current Windows PowerShell application domain. For each assembly, use
the Split-Path cmdlet to get only the filename. Thereafter, sort the assembly filenames alphabetically
with the Sort-Object cmdlet:

[System.AppDomain]::CurrentDomain.GetAssemblies() | ForEach-Object { split-path
$_.Location -leaf } | Sort-Object

As shown in Figure 9-17, neither the Microsoft.SqlServer.SqlWmiManagement.dll assembly nor the
Microsoft.SqlServer.Smo.dll assembly have been loaded by default.

209

Chapter 9: WMI Provider for Configuratio Management

Figure 9-17

To load the Microsoft.SqlServer.SqlWmiManagement.dll assembly for SQL Server 2008, use the
LoadWithPartialName method of the System.Reflection.Assembly class. The Out-Null cmdlet is used
to suppress the informational message:

[reflection.assembly]::LoadWithPartialName("Microsoft.SqlServer.SqlWmiManagement")
| Out-Null

For SQL Server 2005, the command should be as follows:

[reflection.assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") | Out-Null

After the assembly is loaded, you need to first create an SMO object that represents the WMI installation
for SQL Server on the local computer. This object will be the parent of the alias you create. The following
commands instantiate an object for the SQL Server WMI installation on the local computer:

$strComputer=’.’ # ‘.’ or ‘localhost’ for local computer.
$objComputer=New-Object Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer
$strComputer

Now create an alias object from the Microsoft.SqlServer.Management.Smo.Wmi.ServerAlias class and
set the parent of this alias to the ManagedComptuer object you created:

$newalias=New-Object ("Microsoft.SqlServer.Management.Smo.Wmi.ServerAlias")
$newalias.Parent=$objComputer

Each alias has a few properties, such as the name of the server to connect to and the client protocol, that
need to be populated before it can be created. In this example, you recreate the CH0DE1 alias you deleted
earlier. This alias connects to the named instance DEMOPC\CH0DE1 at port 7001 using the TCP/IP protocol:

$newalias.Name=’CH0DE1’ # name of the new alias
DEMOPC\CH0DE1 is the SQL Server instance the alias points to
$newalias.ServerName=’DEMOPC\CH0DE1’
7001 is the port the SQL Server instance DEMOPC\CH0DE1 is listening on
$newalias.ConnectionString=7001
$newalias.ProtocolName=’tcp’
$newalias.Create()

210

Chapter 9: WMI Provider for Configuratio Management

The complete script, CreateServerAlias2008.ps1, is saved in our script directory, C:\DBAScripts. Run
the script from the directory and then verify the creation of the alias by selecting all the objects of the
SqlServerAlias class with the Get-WmiObject cmdlet:

C:\DBAScripts\CreateServerAlias2008.ps1
Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10 -class
SqlServerAlias

The output is shown in Figure 9-18. As you can see, the new alias has been created.

Figure 9-18

Managing Ser ver Networ k Protocols
The ServerNetworkProtocolProperty class represents the properties of server network protocols. To
view the list of properties associated with each network protocol for the default instance on the local
computer, use the Get-WmiObject cmdlet and pass the class name ServerNetworkProtocolProperty to
the -class parameter:

Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10 -class
ServerNetworkProtocolProperty -filter "InstanceName = ‘MSSQLSERVER’" | Select-Object
ProtocolName, PropertyName, IPAddressName

As shown in Figure 9-19, besides the common property Enabled, each protocol has its own properties.
The Named Pipe protocol has a property called PipeName that specifies the named pipe on which the

211

Chapter 9: WMI Provider for Configuratio Management

default SQL Server instance listens. The TCP/IP protocol is associated with IP addresses on the computer,
including the loopback address, 127.0.0.1. The names of the IP addresses are in the format IP1, IP2, and
so on, up to IPAll, which denotes all the IP addresses.

Figure 9-19

By default, the ListenOnAllIPs property is enabled and SQL Server listens on all the IP addresses. The
settings of the IPAll address apply to all the IP addresses.

To prevent hackers from using the default port 1433 to ‘‘slam’’ the default instance, you might want
to change the port number for IPAll from 1433 to another port — for example, 3660. You can use the
Get-WmiObject cmdlet to instantiate a network protocol property object that represents the TCPPort
property of the IPAll address for the default instance. Then invoke the SetStringValue method of the
object to change the port number to 3660. You also need to stop and restart the default instance with
the SqlService class as illustrated in the first part of this chapter in order for the new port number to
take effect. The complete script, ChangeDefaultPortNumber.ps1, is shown here:

$wmi=Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10
-class ServerNetworkProtocolProperty `
-filter "PropertyName=’TcpPort’ and IPAddressName=’IPAll’ and
InstanceName=’MSSQLSERVER’"

$wmi.SetStringValue(3660) | Out-Null

$sqlservice = Get-WmiObject –namespace
root\Microsoft\SqlServer\ComputerManagement10 -class SqlService `

212

Chapter 9: WMI Provider for Configuratio Management

–filter "ServiceName=’MSSQLSERVER’"

$sqlservice.StopService() | Out-Null

$sqlservice.StartService() | Out-Null

Confirm the default port number has been changed
Get-WmiObject –namespace root\Microsoft\SqlServer\ComputerManagement10 -class
ServerNetworkProtocolProperty `
-filter "PropertyName=’TcpPort’ and IPAddressName=’IPAll’ and
InstanceName=’MSSQLSERVER’" | Select-Object PropertyStrVal

The ChangeDefaultPortNumber.ps1 script is saved in the script directory, C:\DBAScripts:

C:\DBAScripts\ChangeDefaultPortNumber.ps1

Figure 9-20 shows the output from running the script. As you can see, the new port number is changed
to 3660.

Figure 9-20

Note that if you only have named instances on your computer, you need to change the –filter parame-
ter in the Get-WmiObject cmdlet before running the script. For example, for a named instance INSTANCE1,
you should change the filter to ServiceName=’MSSQL`$INSTANCE1’. The backtick character (`) is used to
escape the dollar sign ($) character in the service name.

If you want to assign different port numbers to different IP addresses — for example, to associate differ-
ent TCP/IP ports with different non-uniform memory access (NUMA) nodes — then you can disable the
ListenOnAllIPs property and configure the settings of each IP address. You can use the Get-WmiObject
cmdlet to instantiate a network protocol property object that is associated with the ListenOnAllIPs
property for the default instance. Because the value of the property is of type Boolean, you need to
invoke the SetFlag method to set the Boolean value to 0, and thus disable the property. You also need
to stop and restart the default instance in order for the new setting to take effect. The complete script,
DisableListenOnAllIPs.ps1, is shown here:

. for the local computer
If you want to connect to a remote machine, specify the machine name here.
$strComputer = "."
Name of the targeted SQL Server instance. Here the default instance is targeted.
For a named instance INSTANCE1, use "INSTANCE1".
$strInstanceName = "MSSQLSERVER"

$wmi=Get-WmiObject -computerName $strComputer -namespace
root\Microsoft\SqlServer\ComputerManagement10 `

213

Chapter 9: WMI Provider for Configuratio Management

-class ServerNetworkProtocolProperty -filter "PropertyName=’ListenOnAllIPs’
and InstanceName=’$strInstanceName’"

$wmi.SetFlag(0) | Out-Null

$sqlservice = Get-WmiObject -computerName $strComputer –namespace
root\Microsoft\SqlServer\ComputerManagement10 `
-class SqlService –filter "ServiceName=’MSSQL`$$strInstanceName’"

$sqlservice.StopService() | Out-Null

$sqlservice.StartService() | Out-Null

$wmi=Get-WmiObject -computerName $strComputer -namespace
root\Microsoft\SqlServer\ComputerManagement10 `
-class ServerNetworkProtocolProperty -filter "PropertyName=’ListenOnAllIPs’

and InstanceName=’$strInstanceName’"

Confirm the ListenOnAllIPs property has been disabled.
Write-Host "The value of the ListenOnAllIPs property is set to " $wmi.PropertyNumVal

The DisableListenOnAllIPs.ps1script is also saved in our script directory, C:\DBAScripts:

C:\DBAScripts\DisableListenOnAllIPs.ps1

Figure 9-21 shows the output from running the script. As you can see, the value of the ListenOnAllIPs
property is now 0, which means that it is disabled.

Figure 9-21

Changing FILESTREAM Settings
SQL server 2008 introduced a new feature called FILESTREAM. FILESTREAM integrates the SQL Server
Database Engine with an NTFS file system by storing varbinary(max) binary large object (BLOB) data
as files on the file system. This separates the storage of unstructured data, such as bitmap images, text
files, videos, audio files, and so on from structured data into data files. At the same time, this still allows
unstructured data to be queried, inserted, updated, deleted, and backed up like structured data using
Transact-SQL statements.

By default, FILESTREAM is disabled. Before starting to use it on a SQL Server instance, FILESTREAM
needs to be enabled on the instance. The FILESTREAMSettings class provides an EnableFILESTREAM
method that accepts two parameters:

EnableFILESTREAM(System.UInt32 AccessLevel, System.String ShareName

The AccessLevel parameter specifies the access level of FILESTREAM storage, and it can have one of the
values shown in Table 9-4.

214

Chapter 9: WMI Provider for Configuratio Management

Table 9-4: FILESTREAM Access Level Values

Value Description

0 Disables FILESTREAM support for this instance

1 Enables FILESTREAM for Transact-SQL access

2 Enables FILESTREAM for Transact-SQL and local file system access

3 Enables FILESTREAM for Transact-SQL, local file system access, and
remote file system access

The ShareName parameter specifies the file share name that is used to enable local and remote clients to
obtain streaming access to FILESTREAM data through the file system. This value can be changed only
when the enabled state changes from 0 (disabled) or 1 (Transact-SQL only) to file system access (2 or 3).

In our example, FILESTREAM is disabled on the default instance. The following EnableFileStream.ps1
script enables FILESTREAM for Transact-SQL and local file system access. It uses the Get-WmiObject
cmdlet to instantiate a FILESTREAMSettings object associated with the default instance. Next, it invokes
the EnableFILESTREAM method of the object to enable FILESTREAM for Transact-SQL and local file
system access and set the share name to MSSQLSERVER. Then it confirms the changes by printing out
the access level and share name:

. for the local computer
If you want to connect to a remote machine, specify the machine name here.
$strComputer = "."
Name of the targeted SQL Server instance. Here the default instance is targeted.
For a named instance INSTANCE1, use "INSTANCE1".
$strInstanceName = "MSSQLSERVER"

$wmi=Get-WmiObject -computerName $strComputer -namespace
root\Microsoft\SqlServer\ComputerManagement10 `
-class FILESTREAMSettings -filter "InstanceName=’$strInstanceName’"

Prints out the AccessLevel property before changing it.
Write-Host "The access level of FILESTREAM before the change is set to"
$wmi.AccessLevel ", and the file share name is " $wmi.ShareName

$wmi.EnableFILESTREAM(2, ‘MSSQLSERVER’) | Out-Null

$wmi=Get-WmiObject -computerName $strComputer -namespace
root\Microsoft\SqlServer\ComputerManagement10 `
-class FILESTREAMSettings -filter "InstanceName=’$strInstanceName’"

Confirm the AccessLevel property has been set.
Write-Host "The access level of FILESTREAM after the change is set to"
$wmi.AccessLevel ", and the file share name is " $wmi.ShareName

Save the script in your script directory, C:\DBAScripts:

C:\DBAScripts\EnableFILESTREAM.ps1

215

Chapter 9: WMI Provider for Configuratio Management

Figure 9-22 shows the output from running the script. As shown, the access level of the FILESTREAM
property is changed from 0 to 2 for Transact-SQL and local file system. The share name is set to
MSSQLSERVER.

Figure 9-22

However, please note that you still need to restart the SQL Server instance and reconfigure the server
option in SSMS to fully enable FILESTREAM. For example, run the following statement in SSMS to
enable FILESTREAM for Transact-SQL and Win32 streaming access:

EXEC sp_configure filestream_access_level, 2
RECONFIGURE

Changing SQL Ser ver Advanced Properties
In addition to the common properties that are available for the SQLService class, each SQL service has its
own unique properties, which are represented in the SqlServiceAdvancedProperty class. For example,
a SQL Server service has startup parameters, a dump directory for memory dumps in case of an error,
and read-only properties such as version, INSTALLPATH, and DATAPATH. A SQL Browser service has a
BROWSER property that indicates whether the Browser service is listening.

Let’s focus on the properties of the SQL Server services. Suppose the file system is corrupted,
in which case you need to restore every database, including the master database. To restore the
master database, you need to start the SQL Server in single-user mode. Insert the –m option into the
existing startup options, and then restart the database. The ChangeStartupParameters.ps1 script
is shown in the following example. The script first uses the Get-WmiObject cmdlet to instantiate a
SqlServiceAdvancedProperty object that corresponds to the STARTUPPARAMETERS property of the
default instance. Next, it invokes the SetStringValue method to pre-append the -m option to the string
of startup parameters. The ‘‘`n’’ in the script is used to print out the new line character.

. for the local computer
If you want to connect to a remote machine, specify the machine name here.
$strComputer=’.’
Name of the targeted service. Here the default SQL Server service is targeted.
For a named instance INSTANCE1, use "MSSQL`$INSTANCE1"
$strServiceName = "MSSQLSERVER"

$ap=Get-WmiObject -computerName $strComputer –namespace
root\Microsoft\SqlServer\ComputerManagement10 -class SqlServiceAdvancedProperty `
-filter "ServiceName=’$strServiceName’ and PropertyName=’STARTUPPARAMETERS’"

216

Chapter 9: WMI Provider for Configuratio Management

$ap.SetStringValue("-m " + $ap.PropertyStrValue) | Out-Null

Confirm the "-m" option has been added.
$ap=Get-WmiObject -computerName $strComputer –namespace
root\Microsoft\SqlServer\ComputerManagement10 -class SqlServiceAdvancedProperty `
-filter "ServiceName=’$strServiceName’ and PropertyName=’STARTUPPARAMETERS’"

Write-Host "The startup parameters have been changed to `n" $ap.PropertyStrValue

The ChangeStartupParameters.ps1script is saved in our script directory, C:\DBAScripts:

C:\DBAScripts\ChangeStartupParameters.ps1

Figure 9-23 shows the output from running the script. As you can see, the -m option is added as a startup
parameter. The new startup option will take effect the next time SQL Server starts.

Figure 9-23

The following example looks at the read-only properties of the SQL Server service. You can use the
Get-WmiObject cmdlet to instantiate all the objects of the SqlServiceAdvancedProperty class that are
associated with the default instance. Next, the Where-Object cmdlet is used to filter the read-only prop-
erties based on the Boolean property IsReadOnly. Then the Format-Table cmdlet is used to select only
the property names, and their values in string or numerical format.

$strComputer=’.’
$strServiceName = "MSSQLSERVER"

$properties=Get-WmiObject -computerName $strComputer –namespace
root\Microsoft\SqlServer\ComputerManagement10 -class SqlServiceAdvancedProperty
-filter "ServiceName=’$strServiceName’"

$properties | Where-Object {$_.IsReadOnly} | Format-table -wrap PropertyName,
PropertyStrValue, PropertyNumValue

As shown in Figure 9-24, the version number of our SQL Server instance is 10.0.1600.22, which corre-
sponds to SQL Server 2008 RTM.

The binaries of the instance are under the directory C:\Program Files\Microsoft SQL Server\MSSQL10.
MSSQLSERVER\MSSQL. The default path for the data folder points to the directory D:\Microsoft SQL
Server\MSSQL10.MSSQLSERVER\MSSQL. The default language is 1033, English (United States). The registry
root for the default instance is Software\Microsoft\Microsoft SQL Server\MSSQL10.MSSQLSERVER.
The product edition of the instance is Developer Edition, and the instance name is MSSQLSERVER.

217

Chapter 9: WMI Provider for Configuratio Management

Figure 9-24

Summary
This chapter covered some of the classes available through the WMI Provider for Configuration Manage-
ment. You can use these classes to manage SQL Server services, client network protocols, client aliases,
server network protocols, FILESTREAM settings, and startup parameters. Although all these configura-
tion settings can be controlled in SQL Server Configuration Manager, the scripts shown in this chapter
are more flexible and powerful because they can be used to manage SQL Server instances remotely.

The next chapter discusses the SQL Server 2008 WMI Provider.

218

WMI Provider for Ser ver
Events

In addition to the WMI Provider for Configuration Management discussed in Chapter 9, SQL Server
2008 includes one other WMI provider: the WMI Provider for Server Events. This provider trans-
forms SQL Server event data into WMI class instances, and enables you to use WMI to monitor
events in SQL Server. This chapter shows you how to monitor Data Definition Language (DDL)
and trace events in a SQL Server instance by leveraging this provider in Windows PowerShell. This
chapter covers the following:

❑ WMI Provider for Server Events

❑ WMI Query Language (WQL)

❑ Event handling with Windows PowerShell 2.0

❑ Monitoring errors from the SQL Server error log

❑ Monitoring deadlocks

❑ Monitoring blockings

❑ Monitoring login changes and failed login attempts

❑ Monitoring databases and database objects

WMI Provider for Server Events
The WMI Provider for Server Events turns SQL Server into a managed WMI object and
enables you to use WMI to monitor server events. This provider manages a WMI names-
pace for each instance of SQL Server 2008. The name of the namespace is in the format
root\Microsoft\SqlServer\ServerEvents\instance name.

Chapter 10: WMI Provider for Server Events

For a default instance, the namespace is root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER.

For a named instance INSTANCE1, the namespace is root\Microsoft\SqlServer\ServerEvents\
INSTANCE1.

To monitor a default instance on a remote computer — for example, DEMOPC — you can use a named
space, \\DEMOPC\root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER.

The WMI Provider for Server Events leverages event notification in SQL Server. When WMI events in
the namespace of a SQL Server instance are monitored for the first time, the provider creates a target
service in the msdb database called SQL/Notifications/ProcessWMIEventProviderNotification/v1.0,
and a queue for the target service WMIEventProviderNotificationQueue. When a WMI management
application issues a WMI Query Language (WQL) query to access SQL Server events, the WMI Provider
for Server Events translates the query into an event notification. If events on the server level are queried,
the provider creates a server event notification. If events in a database or on a particular database object
are queried, the provider creates an event notification in the target database.

After the required event notification is created, it sends event data to the target service
SQL/Notifications/ProcessWMIEventProviderNotification/v1.0 in the msdb database. The target
service puts the event into the WMIEventProviderNotificationQueue queue in the msdb database. You
can query the catalog views, sys.services, and sys.service_queues, to confirm the creation of the
service and queue. The provider reads the XML event data from this queue and transforms it into
managed object format before returning it to the client application.

Because Service Broker services are used by the event notification to send messages about server events,
Service Broker must be enabled in the msdb database and the target database wherever the events are
generated. To check whether the Service Brokers are enabled on a SQL Server instance, and to get the
Service Broker instance GUID in each database, run the following query on the instance:

SELECT name, is_broker_enabled, service_broker_guid FROM sys.databases;

If the is_broker_enable column for a database has a value of 0, it means that Service Broker is not
enabled for the database. The broker instance in the msdb database is the most useful because msdb hosts
the target service and the service queue. To enable Service Broker for a database — for example, the msdb
database — use the ALTER DATABASE statement:

ALTER DATABASE msdb SET ENABLE_BROKER

A complete list of server events classes for SQL Server 2008 can be found at http://msdn.microsoft.
com/en-us/library/ms186449(SQL.100).aspx.

WMI Query Language (WQL)
The WMI Query Language (WQL) is designed to perform queries against the CIM repository to retrieve
WMI information. WQL is a subset of ANSI SQL with minor semantic changes to support WMI. There-
fore, it is very straightforward to write WQL queries.

WQL queries can be divided into three types: data, event, and schema.

220

Chapter 10: WMI Provider for Server Events

Data queries are used to retrieve class instances and data associations. For example, every Get-WmiObject
command with a -filter parameter in Chapter 9 can be mapped to a data query — a Select statement
with the -filter parameter being mapped to a Where clause. For example, the following command is
equivalent to the command listed after it:

Get-WmiObject –namespace root\Microsoft\SqlServer\ComputerManagement10 –class
ClientNetworkProtocol -filter "ProtocolName=’np’"

The preceding command is equivalent to this:

Get-WmiObject –namespace root\Microsoft\SqlServer\ComputerManagement10 -query
"Select * From ClientNetworkProtocol Where ProtocolName=’np’"

Event queries are used to subscribe to WMI events. Event providers use event queries to register one or
more events. Event queries are completely supported in Windows PowerShell 2.0. They are used in this
chapter.

Schema queries are used to retrieve class definitions and schema associations. They are the least used of all
WQL queries. Because they are not used in this book, schema queries are not covered here.

Event Handling with Windows PowerShell 2.0
Unlike Windows PowerShell 1.0, for which you need to use .NET classes, such as the System.
Management.ManagementEventWatcher class to subscribe and monitor events, Windows PowerShell 2.0
CTP3 provides a full-blown eventing infrastructure for event queries. The following list describes some
eventing cmdlets:

❑ Register-WmiEvent: Create an event subscription of WMI events on the local or a remote com-
puter

❑ Get-Event: Receive subscribed WMI events in the event queue in the current Windows Power-
Shell session.

❑ Remove-Event: Remove subscribed WMI events in the event queue in the current Windows
PowerShell session.

❑ Unregister-Event: Cancel an event subscription.

❑ Get-EventSubscriber: Get the event subscribers in the current Windows PowerShell session.

Before you create an event subscription, you need to write a WQL query that specifies the kinds of
events you would like to subscribe to and monitor. For example, to subscribe to any DDL activity in the
AdventureWorks2008 database on the default SQL Server instance on the local computer PowerPC, query
the DDL_DATABASE_LEVEL_EVENTS event class and use the DatabaseName property to filter the events in
AdventureWorks2008. The WQL query is shown here:

$eventQuery = "SELECT * FROM DDL_DATABASE_LEVEL_EVENTS WHERE DatabaseName=
‘AdventureWorks2008’"

If you want new events to be checked every 10 seconds, you can add WITHIN 10 to the WQL query:

$eventQuery = "SELECT * FROM DDL_DATABASE_LEVEL_EVENTS WITHIN 10 WHERE DatabaseName=
‘AdventureWorks2008’"

221

Chapter 10: WMI Provider for Server Events

The events on the default instance on the local computer are available under the namespace
root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER:

$namespace = "root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER"

To monitor the events on a named instance CH0DE1 on a remote computer — say, DEMOPC — you
only need to change the namespace to \\DEMOPC\root\Microsoft\SqlServer\ServerEvents\
MSSQLSERVER\CH0DE1. For simplicity and clarity, the examples in this chapter focus on a local
computer. You can just change the namespace in the examples to monitor remote instances.

Use the Register-WmiEvent cmdlet to register an event subscription associated with the WQL query and
the namespace. A WMI event specified by the WQL query will be added to the event queue in the current
Windows PowerShell session:

Register-WmiEvent -Namespace $namespace -Query $eventQuery -SourceIdentifier
"sqlevents"

To check whether new events have arrived in the event queue, use the Get-Event cmdlet to get the
events identified by the name of the event subscription. Next, you can use a for loop to iterate through
the events. Usually you won’t be interested in WMI system properties such as __GENUS, __DYNASTY, and
__PATH. You can use a string array variable, $properties, to explicitly select the event properties by their
names. After you get the information of an event, the event is still in the event queue. To avoid duplicate
information, you need to remove the event with the Remove-Event cmdlet after you get its information:

while ($true) {
Get new events
$objEvents=Get-Event –SourceIdentifier "sqlevents" -ErrorAction

SilentlyContinue

If new events arrive, then retrieve the event information.
if ($objEvents) {

Loop through the collection of new events
for ($i=0; $i -lt $objEvents.Count; $i++) {

$objEvents[$i].SourceEventArgs.NewEvent | Select-Object
$properties

Remove the event after its information has been processed.
Remove-Event -EventIdentifier $objEvents[$i].EventIdentifier -

ErrorAction SilentlyContinue

}
}

}

In the preceding code, the events are monitored in an infinite loop. Some kind of stop mechanism should
be introduced to break out of the loop without aborting brutally by using Ctrl+C. The following code
enables the loop to be broken by pressing the Esc key:

$ESCkey = 27 # 27 is the key number for the Esc button.

Check if the Esc key is pressed

222

Chapter 10: WMI Provider for Server Events

if ($host.ui.RawUi.KeyAvailable) {
$key = $host.ui.RawUI.ReadKey("NoEcho,IncludeKeyUp")

If the Esc key is pressed, unregister the event subscription, break the loop,
and exit this function.

if ($key.VirtualKeyCode -eq $ESCkey) {
Unregister-Event "sqlevents"
break

}
}

To retrieve different events, you only need to change the particular WQL query, the namespace, and
the selected properties of the events. Therefore, it makes sense to encapsulate the preceding steps in
a function, and reuse the function to monitor different events throughout this chapter. The complete
function Get-WMIEvent.ps1 is shown here:

function Get-WMIEvent([string] $eventQuery, [string] $namespace, [string[]]
$properties)
{
$ESCkey = 27 # 27 is the key number for the Esc button.

If an event subscription called "sqlevents" already exists, unregister it first.
if (Get-EventSubscriber ‘sqlevents’ -ErrorAction SilentlyContinue) {

Unregister-Event "sqlevents"
}

Create an event subscription called "sqlevents" that registers to the events
specified by the $eventQuery under the $namespace.
Register-WmiEvent -Namespace $namespace -Query $eventQuery -SourceIdentifier
"sqlevents"

while ($true) {
Get new events
$objEvents=Get-Event –SourceIdentifier "sqlevents" -ErrorAction

SilentlyContinue

If new events arrive, then retrieve the event information.
if ($objEvents) {

Loop through the collection of new events
for ($i=0; $i -lt $objEvents.Count; $i++) {

$objEvents[$i].SourceEventArgs.NewEvent | Select-Object
$properties

Remove the event after its information has been processed.
Remove-Event -EventIdentifier $objEvents[$i].EventIdentifier -

ErrorAction SilentlyContinue

}
}

Check if the Esc key is pressed
if ($host.ui.RawUi.KeyAvailable) {

$key = $host.ui.RawUI.ReadKey("NoEcho,IncludeKeyUp")

223

Chapter 10: WMI Provider for Server Events

If the Esc key is pressed, unregister the event subscription, break the
loop, and exit this function.

if ($key.VirtualKeyCode -eq $ESCkey) {
Unregister-Event "sqlevents"
break

}
}

}
}

As discussed in Chapter 4, to reuse a function, you can put it in the user-specific, shell-specific
profile: %UserProfile%\My Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1 or
%UserProfile%\Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1 on Windows
Vista. Alternately, you can put the function in a library file and source in the file each time prior to
executing a script. In this case, the library file is called dbaLib.ps1 under the C:\DBAScripts directory.
The examples in this chapter use the Get-WMIEvent function to print out event information in the console
for demonstration purposes.

In real practice, it is more common to save the output into a log file, or notify support personnel through
e-mail or page based on the event received, or send an alert to an event management system such as
Netcool. The following function is a more flexible version of the Get-WMIEvent function that accepts a
script block:

function Get-WMIEvent([string] $eventQuery, [string] $namespace, [ScriptBlock]
$sblock)
{
$ESCkey = 27 # 27 is the key number for the Esc button.

If an event subscription called "sqlevents" already exists, unregister it first.
if (Get-EventSubscriber ‘sqlevents’ -ErrorAction SilentlyContinue) {

Unregister-Event "sqlevents"
}

Create an event subscription called "sqlevents" that registers to the events
specified by the $eventQuery under the $namespace.
Register-WmiEvent -Namespace $namespace -Query $eventQuery -SourceIdentifier
"sqlevents"

while ($true) {
Get new events
$objEvents=Get-Event –SourceIdentifier "sqlevents" -ErrorAction

SilentlyContinue

If new events arrive, then retrieve the event information.
if ($objEvents) {

Loop through the collection of new events
for ($i=0; $i -lt $objEvents.Count; $i++) {

$objEvents[$i].SourceEventArgs.NewEvent | &$sblock

Remove the event after its information has been processed.
Remove-Event -EventIdentifier $objEvents[$i].EventIdentifier -

ErrorAction SilentlyContinue

224

Chapter 10: WMI Provider for Server Events

}
}

Check if the Esc key is pressed
if ($host.ui.RawUi.KeyAvailable) {

$key = $host.ui.RawUI.ReadKey("NoEcho,IncludeKeyUp")

If the Esc key is pressed, unregister the event subscription, break the
loop, and exit this function.

if ($key.VirtualKeyCode -eq $ESCkey) {
Unregister-Event "sqlevents"
break

}
}

}
}

The differences between the Get-WmiEvent functions have been highlighted. You can utilize the script
block to save the event information into a log file C:\sqlevents.log. The script block is as follows:

$sblock = { $input | Select-Object ObjectType, SPID, SQLInstance, TSQLCommand
| Out-File "c:\sqlevents.log" }

The $input variable enumerates the event objects in the incoming pipeline.

Monitoring Errors from the SQL Ser ver Error
Log

The errors identified in the SQL Server error log help to detect any current or potential problems, includ-
ing data file growth problems, backup device problems, failed logins, insufficient lock resources, and so
on. The trace event class for the SQL Server error log is ERRORLOG. In the real world, DBAs are usually
more interested in errors with a severity level of 17 and higher, which indicate software or hardware
errors, rather than informational messages or user errors. In SQL Server 2008, error messages with sever-
ity 16, from policy violations, are also worth monitoring.

In the script that follows, MonitorErrorLog.ps1, the event query to subscribe to errors from the SQL
Server error log, the namespace of the default instance, and the properties of the events are defined.
Then the script calls the Get-WMIEvent function to capture and print out the error events. The backtick
characters ()̀ are used to concatenate the script lines:

$query = "SELECT * FROM ERRORLOG WHERE Severity >= 16"
$sqlnamespace = "root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER"
$selections= "LoginSid","PostTime","SQLInstance","IsSystem","DatabaseID", `
"ComputerName","SessionLoginName","SPID","TransactionID","EventSequence", `
"HostName","ClientProcessID","NTUserName","RequestID","DatabaseName", `
"Error","Severity","TextData","NTDomainName","LoginName","StartTime",
"ApplicationName"

Get-WMIEvent $query $sqlnamespace $selections

225

Chapter 10: WMI Provider for Server Events

Run the script in a Windows PowerShell console:

. C:\DBAScripts\dbaLib.ps1
C:\DBAScripts\MonitorErrorLog.ps1

While the script is running, open a SQL Server Management Studio (SSMS) query window and run the
following SQL query on the default instance to generate an error message with severity 16:

Use AdventureWorks2008
Raiserror (’This is a test message’, 16, 1) with log

Figure 10-1 shows the output after the script captures the error.

Figure 10-1

As shown in the output, the login PowerDomain\PowerUser connects with the default instance
MSSQLSERVER on POWERPC in a session with SPID 52. The login causes an error with error number 50000
and severity 16 in the AdventureWorks2008 database. The TextData column provides the complete error
information. After you are notified of the errors from the SQL Server error log, you can take appropriate
action.

Monitoring Deadlocks
A deadlock occurs when two or more sessions permanently block each other because each session has
a lock on a resource which the other sessions are trying to acquire. The SQL Server Database Engine
has a lock monitor thread that periodically initiates a search through all of the tasks to detect deadlocks.
After a deadlock is detected, the Database Engine ends a deadlock by choosing one of the threads as
a deadlock victim, and a 1205 error is thrown by SQL Server. To collect information about the threads
and the resources involved in the deadlock, you can monitor the DEADLOCK_GRAPH trace event class. The
MonitorDeadlocks.ps1 script defines the event query, the namespace for the default instance, and the
properties of deadlock events:

226

Chapter 10: WMI Provider for Server Events

$query = "SELECT * FROM DEADLOCK_GRAPH"
$sqlnamespace = "root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER"
$selections= "LoginSid", "LoginName", "SQLInstance", "IsSystem", "PostTime", `
"ComputerName", "SessionLoginName", "SPID", "StartTime", "TransactionID", `
"EventSequence", "TextData"

Get-WMIEvent $query $sqlnamespace $selections

Run the script in a Windows PowerShell console:

. C:\DBAScripts\dbaLib.ps1
C:\DBAScripts\MonitorDeadlocks.ps1

In order to test this script, run the following query in a SSMS query window:

CREATE TABLE Test (i int)

INSERT Test SELECT 1
GO
BEGIN TRAN
UPDATE Test SET i = 1
WAITFOR DELAY ‘00:00:30’
UPDATE Test2 SET i = 1
WAITFOR DELAY ‘00:02:00’
COMMIT

DROP TABLE Test

This session holds exclusive locks on the Test table, and tries to update the Test2 table.

Within 30 seconds, in another SSMS query window, run this query:

CREATE TABLE Test2 (i int)

INSERT Test2 SELECT 1
GO
BEGIN TRAN
UPDATE Test2 SET i = 1
WAITFOR DELAY ‘00:00:30’
UPDATE Test SET i = 1
WAITFOR DELAY ‘00:02:00’
COMMIT

DROP TABLE Test2

This session holds exclusive locks on the Test2 table, and tries to update the Test table. You have a
deadlock situation here because these two sessions are blocking each other, trying to update the table
the other process is holding. Our script, MonitorDeadlocks.ps1, detects the deadlock and prints out the
deadlock graph.

Figure 10-2 shows the output. The last property, TextData, cannot be shown in full.

227

Chapter 10: WMI Provider for Server Events

Figure 10-2

The complete TextData is shown here:

<TextData><deadlock-list>
 <deadlock victim="processc6b558">
 <process-
list>
 <process id="processc6b558" taskpriority="0" logused="248"
waitresource="RID: 1:1:304:0" waittime="2234" ownerId="291807"
transactionname="user_transaction" lasttranstarted="2009-01-16T22:38:55.550"
XDES="0x58b8280" lockMode="U" schedulerid="1" kpid="4272" status="suspended"
spid="55" sbid="0" ecid="0" priority="0" trancount="2" lastbatchstarted="2009-01-
16T22:38:55.550" lastbatchcompleted="2009-01-16T22:38:55.550" lastattention="2009-
01-16T22:38:26.867" clientapp="Microsoft SQL Server Management Studio - Query"
hostname="POWERPC" hostpid="4900" loginname="POWERDOMAIN\PowerUser"
isolationlevel="read committed (2)" xactid="291807" currentdb="1"
lockTimeout="4294967295" clientoption1="671088672" clientoption2="128056">

 <executionStack>
 <frame procname="adhoc" line="4" stmtstart="16"
sqlhandle="0x02000000c1081407296ca08140bec8aa7e80cbe6b1ce3619">
UPDATE [Test]
set [i] = @1 </frame>
 <frame procname="adhoc" line="4" stmtstart="130"
stmtend="176"sqlhandle="0x020000003c79c7207829ee6fa84ad47a7c28afb36a2e72eb">

UPDATE Test SET i = 1 </frame>
 </executionStack>

<inputbuf>
BEGIN TRAN
UPDATE Test2 SET i = 1
WAITFOR
DELAY '00:00:30'
UPDATE Test SET i = 1
WAITFOR
DELAY '00:02:00'
COMMIT

DROP TABLE Test2

 </inputbuf>
 </process>
 <process id="process6350aa8"
taskpriority="0" logused="248" waitresource="RID:1:1:309:0" waittime="9332"
ownerId="291761" transactionname="user_transaction" lasttranstarted="2009-01-16T22:
38:48.447" XDES="0x52cdb30" lockMode="U" schedulerid="1" kpid="4580"
status="suspended" spid="52" sbid="0" ecid="0" priority="0" trancount="2"
lastbatchstarted="2009-01-16T22:38:48.447" lastbatchcompleted="2009-01-16T22:

228

Chapter 10: WMI Provider for Server Events

38:48.447" lastattention="2009-01-16T22:38:05.337" clientapp="Microsoft SQL
Server Management Studio - Query" hostname="POWERPC" hostpid="4900"
loginname="POWERDOMAIN\PowerUser" isolationlevel="read committed (2)"
xactid="291761" currentdb="1" lockTimeout="4294967295" clientoption1="671090784"
clientoption2="390200">
 <executionStack>
 <frame procname="adhoc"
line="4" stmtstart="16" sqlhandle="0x02000000d754ba259586cc023c12b6e68ced80a
43710ab21">
UPDATE [Test2] set [i] = @1 </frame>

<frame procname="adhoc" line="4" stmtstart="128" stmtend="176"
sqlhandle="0x02000000952d5a0eee199c15bbafd5addc0f91981b230c11">
UPDATE
Test2 SET i = 1 </frame>
 </executionStack>
 <inputbuf>

BEGIN TRAN
UPDATE Test SET i = 1
WAITFOR DELAY
'00:00:30'
UPDATE Test2 SET i = 1
WAITFOR DELAY
'00:02:00'
COMMIT

DROP TABLE Test

</inputbuf>
 </process>
 </process-list>
 <resource-list>

<ridlock fileid="1" pageid="304" dbid="1" objectname="master.dbo.Test"
id="lock511fec0" mode="X" associatedObjectId="72057594039697408">

<owner-list>
 <owner id="process6350aa8" mode="X"></owner>

</owner-list>
 <waiter-list>
 <waiter id="processc6b558" mode="U"
requestType="wait"></waiter>
 </waiter-list>
 </ridlock>

<ridlock fileid="1" pageid="309" dbid="1" objectname="master.dbo.Test2"
id="lock8015180" mode="X" associatedObjectId="72057594039762944">

<owner-list>
 <owner id="processc6b558" mode="X"></owner>

</owner-list>
 <waiter-list>
 <waiter id="process6350aa8"
mode="U" requestType="wait"></waiter>
 </waiter-list>
 </ridlock>

 </resource-list>
 </deadlock>
</deadlock-list>
</TextData>

Spid 10, shown in the SPID property, was the lock detection thread initiated by SQL Server, run under
the sa login. The XML text in the TextData property might look cryptic, but if you examine it carefully the
victim in this deadlock situation had a process ID processc6b558, which matched the process ID in the
first <process> tag. The content in this <process> tag indicates that the SPID of the victim is 55, and
the login POWERDOMAIN\PowerUser owned this SPID.

The <frame> tag inside the process tag indicates that the statement SPID 55 was executing at the time of
the deadlock. If you are interested in the entire input buffer of this SPID, you can look at the <inputbuf>
tag. The second <process> tag shows that the winner in this deadlock situation is spid 52, and that the
login POWERDOMAIN\PowerUser also owns this SPID. Again, the <frame> tag shows the statement spid 52
was executing at the time of the deadlock, and the <inputbuf> tag shows its entire input buffer.

The <resource-list> tag shows the resource each process is holding exclusively and the resource it
was waiting for. Although only process IDs processc6b558 and process6350aa8 were included in the
<resource-list> tag, you can match them with SPID 55 and 52 individually in the <process> tags. The
objectname attribute shows you the resource names.

Monitoring Blockings
Blocking occurs when a process is waiting for a resource that another process is holding. Excessive block-
ing can increase process wait time and slow down overall SQL Server performance. The trace event class
BLOCKED_PROCESS_REPORT can be used to monitor blocked processes that are waiting for resources. How-
ever, by default, this event class is disabled. You need to run sp_configure to reconfigure the blocked
process threshold option. This option specifies the threshold, in seconds, at which blocked process reports

229

Chapter 10: WMI Provider for Server Events

are generated. For example, if you want a blocked process report to be generated for each session that is
blocked for 30 seconds, run the following query on the SQL Server:

Exec sp_configure ‘show advanced options’, 1
RECONFIGURE
GO
Exec sp_configure ‘blocked process threshold’, 30
RECONFIGURE
GO

The setting change becomes effective immediately without a server stop and restart. Please note that
each report contains only two connections of a blocking. Unlike the DEADLOCK_GRAPH event, which shows
a deadlock chain, this event class does not show the complete chain. You have to work through all the
reports gathered at the same time to figure out which process is at the head of the chain.

The MonitorBlockings.ps1 script defines the event query, the namespace for the default instance, and
the properties of blocked process reports:

$query = "SELECT * FROM BLOCKED_PROCESS_REPORT"
$sqlnamespace = "root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER"
$selections= "LoginSid","PostTime","SQLInstance","IsSystem",`
"DatabaseID","ComputerName","SessionLoginName","SPID", `
"TransactionID","EventSequence","IndexID","ObjectID", "TextData", `
"EndTime","Duration","Mode"

Get-WMIEvent $query $sqlnamespace $selections

Run the script in a Windows PowerShell session:

. C:\DBAScripts\dbaLib.ps1
C:\DBAScripts\MonitorBlockings.ps1

While the scripts are running, open a query window in SSMS and run this query:

USE AdventureWorks2008

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].[Test]’)
AND
type in (N’U’))
DROP TABLE [dbo].[Test]
GO

CREATE TABLE Test (i int)

INSERT Test SELECT 1
GO
BEGIN TRAN
UPDATE Test SET i = 1
WAITFOR DELAY ‘00:01:00’
COMMIT

This session holds exclusive locks for one minute on the Test table.

230

Chapter 10: WMI Provider for Server Events

In another query window in SSMS, run the following query:

USE AdventureWorks2008
UPDATE Test SET i = 1

Because this session is trying to update the Test table, it is blocked by the first session. The Monitor-
Blockings.ps1 script detects the blocking and picks up the process report.

Figure 10-3 shows the output. Similar to the deadlock graph shown in the last section, spid 7, shown in
the SPID property, is the blocking detection thread initiated by SQL Server.

Figure 10-3

The XML text in the TextData property shows the blocked process in the <blocked-process> tag. The
blocked process is running under SPID 54, owned by the login POWERDOMAIN\PowerUser. The entire input
buffer of this SPID is in the <inputbuf> tag. The blocking process is included in the <blocking-process>
tag. It is running under SPID 52, owned by the login POWERDOMAIN\PowerUser. Its entire input buffer
can be found in the <inputbuf> tag. The waitresource attribute (waitresource="RID: 10:1:23082:0")

231

Chapter 10: WMI Provider for Server Events

inside the <process> tag of the <blocked-process> tag identifies the ID of the page that the waiter waits
for, RID: 10:1:23082 (note that a lock on a data row is actually on the data page that contains the row).
The first number, 10, is the ID of the database to which the resource belongs, which you could also get
from the currentdb attributes inside the <process> tag. In this case, database ID 10 corresponds to the
AdventureWorks2008 database. To determine the resource, you can run the undocumented dbcc page
command in the AdventureWorks2008 database (see Figure 10-4):

dbcc traceon(3604)
dbcc page (10,1,23082,0)

Figure 10-4

The Metadata:ObjectId 711673583 under the PAGE HEADER in the result is the ID of the Test table that
owns the locked page. You can confirm this by running the following command:

select OBJECT_NAME(711673583)

This command should return the table name, Test. Therefore, the output indicates that SPID 54 is waiting
for a data page of the Test table to be released by SPID 52.

232

Chapter 10: WMI Provider for Server Events

Monitoring Login Changes and Failed Login
Attempts

As a DBA working at a financial company, I often face questions from business units on security auditing.
They’re usually concerned with unauthorized server access or malicious security exploitation. To help
them meet auditing requirements, I can create SQL Server traces using extended procedures, such as
sp_trace_setevent and sp_trace_setstatus, to monitor login events in the background. However, it
is not an easy task. It involves creating a trace with the right events, creating a startup procedure to kick
off the trace when SQL Server starts, and outputting the trace to a readable file. The following example
shows an approach to monitoring login changes and failed login attempts with the WMI Provider for
Server Events, which is much easier and cleaner.

DDL_LOGIN_EVENTS is the DDL event class for login events. It has three child classes:

❑ ALTER LOGIN: Captures changes to properties of SQL Server logins and Windows logins

❑ CREATE LOGIN: Captures new account creations

❑ DROP LOGIN: Captures account deletions

In the script that follows, called MonitorLogins.ps1, the event query is defined to subscribe to events
from the DDL LOGIN EVENTS class. The namespace of the default instance and the properties of the events
are also defined. Then the script calls the Get-WMIEvent function to capture and print out the login DDL
events:

$query = "SELECT * FROM DDL_LOGIN_EVENTS"
$sqlnamespace = "root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER"
$selections= "__CLASS", "SID", "ObjectName", "ObjectType", `
"PostTime", "ComputerName", "DefaultLanguage", "DefaultDatabase", `
"SPID", "LoginName", "SQLInstance", "LoginType"

Get-WMIEvent $query $sqlnamespace $selections

In this script, we add a general property CLASS to specify whether a login is altered, created, or dropped.
This is necessary because the three child classes don’t return any class-specified properties to identify the
type of action, although DROP_LOGIN returns the TSQLCommand executed to drop the login.

Run the script in a Windows PowerShell session:

. C:\DBAScripts\dbaLib.ps1
C:\DBAScripts\MonitorLogins.ps1

Open a query window in SSMS and run the following query on the default instance:

CREATE LOGIN sqluser WITH PASSWORD=’Welcome123’
ALTER LOGIN sqluser WITH PASSWORD=’Er34jkOio’
DROP LOGIN sqluser

As you can see, the query creates a SQL Server login, sqluser, changes its password, and then drops the
login. Our script, MonitorLogins.ps1, captures all three login events.

233

Chapter 10: WMI Provider for Server Events

Figure 10-5 shows the output. The script prints out the type of events that happened (CLASS), the login
that was changed (ObjectName), and the login that issued the change (LoginName). From the information,
you can track down unplanned or malicious changes.

Figure 10-5

In addition to login changes, failed login attempts also need to be monitored to prevent malicious security
exploitation. The trace event class AUDIT_LOGIN_FAILED is used for this purpose. The MonitorFailed-
LoginAttempts.ps1 script shown here captures failed login attempts:

$query = "SELECT * FROM AUDIT_LOGIN_FAILED"
$sqlnamespace = "root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER"
$selections= "HostName","NTUserName","SQLInstance","Success","IsSystem",`
"RequestID","DatabaseID","DatabaseName","ComputerName","SessionLoginName",`
"SPID","NTDomainName","LoginName","StartTime","ApplicationName",`
"EventSequence","PostTime","ClientProcessID","Error","TextData"

Get-WMIEvent $query $sqlnamespace $selections

Run the script in a Windows PowerShell session:

. C:\DBAScripts\dbaLib.ps1
C:\DBAScripts\MonitorFailedLoginAttempts.ps1

234

Chapter 10: WMI Provider for Server Events

Open SQL Server Management Studio. Try to log in as sa with an invalid password. You should get a
pop-up message like the one shown in Figure 10-6.

Figure 10-6

The login attempt failed, of course, because the password was incorrect. The output from the script is
shown in Figure 10-7.

Figure 10-7

The TextData property shows the same message shown in the pop-up window. The ComputerName
property indicates from which workstation the login was attempted. By capturing all the failed login
attempts, you can track down malicious security exploitation.

Monitoring Databases
On the server level, you need to audit database events to guard against accidental database deletions.
In a shared database environment, you also need to monitor the addition of new databases in order to
manage backups and disk space effectively.

Database events are included in the DDL_SERVER_LEVEL_EVENTS class. Three child classes of this class are
associated with database changes:

❑ ALTER DATABASE: Captures changes to properties of databases

235

Chapter 10: WMI Provider for Server Events

❑ CREATE DATABASE: Captures new database creations

❑ DROP DATABASE: Captures database deletions

There are other child classes under the DDL_SERVER_LEVEL_EVENTS class. To retrieve only events from
the preceding three child classes, you need to use the identifier __CLASS to filter the events from the
DDL_SERVER_LEVEL_EVENTS class in the event query. The sample script, MonitorDatabases.ps1, is shown
here:

$query = "SELECT * FROM DDL_SERVER_LEVEL_EVENTS `
WHERE __CLASS = ‘CREATE_DATABASE’ or __CLASS = ‘ALTER_DATABASE’ `
or __CLASS = ‘DROP_DATABASE’"
$sqlnamespace = "root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER"
$selections= "SQLInstance","PostTime","ComputerName","SPID",`
"LoginName","TSQLCommand","DatabaseName"

Get-WMIEvent $query $sqlnamespace $selections

Run this script in a Windows PowerShell session:

. C:\DBAScripts\dbaLib.ps1
C:\DBAScripts\MonitorDatabases.ps1

Open a query window in SSMS and run the following query on the default instance:

CREATE DATABASE testDB
ALTER DATABASE testDB modify file (name=testDB, size=10MB)
DROP DATABASE testDB

As shown here, this SQL query creates a testDB database, changes the size of the database’s data file,
and then drops the database.

The MonitorDatabases.ps1 script captures all three events.

Figure 10-8 shows the output. The DatabaseName property shows the database that is being changed.

The TSQLCommand property shows the actual T-SQL statement that is run against the server. You can also
see details about the sessions that make the changes, such as SPID, login name, and computer name.

Monitoring Database Objects
In a development team where each developer can make his or her own changes to the database schema,
a developer might make unplanned changes, and overwrite the work done by another developer. To
ensure that the change process is transparent and manageable, you should track down planned and
unplanned changes to minimize the risk of improper changes causing a database outage.

Let’s take the stored procedure as an example. The DDL_PROCEDURE_EVENTS class is the event class for
stored procedure events. It has three child classes:

❑ ALTER PROCEDURE: Captures changes to properties of stored procedures

236

Chapter 10: WMI Provider for Server Events

Figure 10-8

❑ CREATE PROCEDURE: Captures the creation of new stored procedures

❑ DROP PROCEDURE: Captures deletions of existing stored procedures

The MonitorStoredProcs.ps1 script shown here monitors stored procedure changes in the
AdventureWorks2008 database:

$query = "SELECT * FROM DDL_PROCEDURE_EVENTS WHERE DatabaseName like
‘AdventureWorks2008%’ "
$sqlnamespace = "root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER"
$selections = "SchemaName","TSQLCommand","PostTime","SQLInstance",`
"ObjectName","ObjectType","DatabaseName","ComputerName","SPID",`
"LoginName","UserName"

Get-WMIEvent $query $sqlnamespace $selections

Run the script in a Windows PowerShell console:

. C:\DBAScripts\dbaLib.ps1
C:\DBAScripts\MonitorStoredProcs.ps1

Open a query window in SSMS and run the following query in the AdventureWorks2008 database on the
default instance:

USE AdventureWorks2008
GO

237

Chapter 10: WMI Provider for Server Events

CREATE PROCEDURE getBlockedProcessesDetails
AS
SELECT session_id, blocking_session_id
FROM sys.dm_exec_requests
WHERE blocking_session_id > 0
GO
ALTER PROCEDURE getBlockedProcessesDetails
AS
SELECT session_id, command, blocking_session_id
FROM sys.dm_exec_requests
WHERE blocking_session_id > 0
GO
DROP PROCEDURE getBlockedProcessesDetails

The query first creates a stored procedure called getBlockedProcessesDetails. This stored procedure
gets a list of blocked and blocking sessions. Then the stored procedure is modified to include the T-SQL
command from the blocked session. Finally, the stored procedure is dropped.

As shown in Figure 10-9, the MonitorStoredProcs.ps1 script captures all three events.

Figure 10-9

238

Chapter 10: WMI Provider for Server Events

The ObjectName property shows which stored procedure is being changed. The TSQLCommand property
shows the actual T-SQL statement that is run against the database to change the stored procedure. The
LoginName property shows the login that makes the changes.

Summary
This chapter demonstrated the uses of the WMI Provider for Server Events in event monitor-
ing. You learned how to leverage the eventing infrastructure in Windows PowerShell 2.0 to
create a function, Get-WMIEvent, to monitor DDL and trace events. The examples include errors
from SQL Server error log, deadlocks, blockings, login changes, failed login attempts, database
changes, and database object changes. You can mimic the scripts in this chapter, and easily
extend the monitoring function, to other events in SQL Server instances. For more information
on this provider and available event classes, you can refer to BOL or visit the MSDN website,
http://msdn.microsoft.com/en-us/library/ms180560.aspx.

In the next two chapters, you will discover a new feature in SQL Server 2008, Windows PowerShell sup-
port for SQL Server. This new feature highlights Microsoft’s determination to use Windows PowerShell
to automate server administration.

239

Windows PowerShell in
SQL Ser ver 2008

Environment, SQL Ser ver
PowerShell Provider

When installing SQL Server 2008, SQL Server installs Windows PowerShell and two SQL Server
PowerShell snap-ins that expose SQL Server functionality in PowerShell. You may remember
from Chapter 2 that PowerShell Snap-ins are .NET assemblies that contain Windows PowerShell
providers and/or Windows PowerShell cmdlets that extend the functionality of the shell. When a
snap-in is loaded into the PowerShell environment, the cmdlets and providers contained in it are
registered with the shell. SQL Server 2008 installs its own snap-ins, which are covered in detail in
the latter part of this chapter.

This chapter discusses the new features in SQL Server 2008 that integrate SQL Server and Power-
Shell:

❑ sqlps utility

❑ SQLSERVER: Drive and Invoke-Sqlcmd cmdlets

❑ Encoding and decoding the Uniform Resource Name (URN)

sqlps Utility
The sqlps utility is included with SQL Server 2008; you don’t have to install it separately. When the
sqlps utility is launched, it starts a PowerShell session with the SQL Server PowerShell provider.
This means that SQL Server PowerShell snap-ins and all SQL Server–related cmdlets are loaded,
registered, and ready to be executed. The SQL Server PowerShell provider exposes SQL Server
objects in a hierarchy similar to the file system.

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

In addition to sqlps, the following components are also already installed at the time of SQL Server 2008
installation:

❑ .NET Framework 3.5: The SQL Server 2008 installation process installs .NET Framework 3.5 and
then requires a reboot.

❑ Windows PowerShell 1.0: If Windows PowerShell is not already installed, SQL Server installs it.

❑ SQL Server PowerShell Snap-ins:

❑ Includes a set of SQL Server cmdlets

❑ A SQL Server PowerShell provider enables you to navigate SQL Server objects using paths
similar to file system paths.

❑ sqlps utility: sqlps starts the PowerShell environment and then loads and registers the SQL
Server PowerShell Snap-ins. With sqlps, you can run PowerShell commands and scripts, and
run SQL Server cmdlets with sqlps.

You can invoke and use PowerShell on a SQL Server 2008 server in four different ways. The first
way is through the sqlps utility. sqlps.exe is copied to the \Program Files\Microsoft SQL
Server\100\Tools\Binn folder at the time of installation. Because the Binn folder is added to the System
PATH variable, you can launch the sqlps utility by selecting Start � Run and entering sqlps, as shown
in Figure 11-1.

Figure 11-1

Once you click OK, you can see that SQL Server PowerShell [sqlps] is launched (see Figure 11-2).

Figure 11-2

242

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

PowerShell can also be launched from SQL Server Management Studio by right-clicking on an object in
Object Explorer, as shown in Figure 11-3. SQL Server Management Studio launches the sqlps and sets
the location to the object to which you were pointing. In this case, it is the AWBuildVersion table in the
database AdventureWorks2008 (see Figure 11-4).

Figure 11-3

Figure 11-4

PowerShell scripts and cmdlets can also be launched inside a SQL Server Agent job. Figure 11-5 shows
that by setting the type of SQL Server Agent job step to PowerShell, you can insert PowerShell cmdlets
and scripts.

You can also launch Windows PowerShell and add the SQL Server PowerShell provider functionality
using the Add-PSSnapin cmdlet, as shown in Figure 11-6. In order to launch PowerShell in this way,
follow these steps:

1. Launch Windows PowerShell from Start � Program � Windows PowerShell.

2. Add the SQL Server PowerShell snap-ins as shown. In the following example, the cmdlet
Get-PSSnapin –registered shows all the available registered snap-ins in the system.

243

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

Figure 11-5

Figure 11-6

3. The two cmdlets Add-PSSnapin SqlServerProviderSnapin100 and Add-PSSnapin
SqlServerCmdletSnapin100 add the SQL Server 2008 PowerShell snap-ins and the SQL
Server PowerShell provider functionality to the current PowerShell Session (see Figure 11-7):

Get-PSSnapin –registered
Add-PSSnapin SqlServerProviderSnapin100
Add-PSSnapin SqlServerCmdletSnapin100

You can also load the Type Data and Format Data files used by sqlps. The files are located in the
directory C:\Program Files\Microsoft SQL Server\100\Tools\Binn by default. If your installation
changes the default location, then you will need to change the path in the following script:

244

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

Update-TypeData "C:\Program Files\Microsoft SQL
Server\100\Tools\Binn\SQLProvider.Types.ps1xml"
Update-FormatData "C:\Program Files\Microsoft SQL
Server\100\Tools\Binn\SQLProvider.Format.ps1xml"

Figure 11-7

The four methods just described can be used in different scenarios. If SQL Server Management Studio is
already launched and you want to open a PowerShell session with the SQL Server PowerShell provider,
then methods 2 and 3 are very useful. The last method is very useful when you are already in a powerful
session and want to load the SQL Server PowerShell provider onto the current session. If SQL Server
Management Studio is not launched and you don’t have an existing PowerShell session, then you could
use the first method.

SQLSERVER: Drive and Invoke-Sqlcmd cmdlet
To confirm that SQL Server PowerShell snap-ins are added to your Windows PowerShell session, you
can query the SQL Server–related snap-ins in the current PowerShell environments by executing the
cmdlet Get-PSSnapin:

Get-PSSnapin Sql*

Figure 11-8 shows that the following snap-ins are loaded and available:

❑ SqlServerCmdletSnapin100

❑ SqlServerProviderSnapin100

SQL Snap-ins
At this point, you must be curious to find all the available cmdlets related to SQL Server 2008. To do so,
you can use the Get-Command cmdlet (see Figure 11-9):

Get-Command -commandtype cmdlet | where-object {$_.PSSnapin -match
"SqlServerCmdletSnapin100"}
Get-Command -commandtype cmdlet | where-object {$_.PSSnapin -match
"SqlServerProviderSnapin100"}

245

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

Figure 11-8

Figure 11-9

As shown in the results, the following cmdlets are available:

❑ Invoke-PolicyEvaluation

❑ Invoke-Sqlcmd

❑ Convert-UrnToPath

❑ Decode-SqlName

❑ Encode-SqlName

Except for Invoke-PolicyEvaluation, all of these cmdlets are covered in detail later in the chapter. The
Invoke-PolicyEvaluation cmdlet is related to SQL Server policy evaluation and is discussed in the next
chapter.

Because the SqlServerProviderSnapin100 snap-in is available in the current session, it contains the
SQL Server PowerShell provider that exposes SQL Server objects in a hierarchy similar to file system
paths, under a drive named SQLSERVER. It is very easy to navigate to a particular object type and
execute all Data Definition Language (DDL) statements in the form of file system commands. You can
see the SQLSERVER: drive, along with other PowerShell drives available in the current environment, by
executing the cmdlet Get-PSDrive, as shown here (see Figure 11-10):

Get-PSDrive

246

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

Figure 11-10

The output shows that a new drive is available, SQLSERVER:\. This is the root drive. Now navigate to
SQLSERVER: and query the child items as shown here:

Set-Location SQLSERVER:
Get-ChildItem | Select-Object Name

As shown in Figure 11-11, the following child items are listed:

❑ SQL

❑ SQLPolicy

❑ SQLRegistration

❑ DataCollection

Figure 11-11

SQLSERVER: is the root folder, which contains a child item named ‘‘SQL.’’ You can navigate to this
subfolder using the cmdlet Set-Location, as shown here:

Set-Location SQL
Get-ChildItem

From the output, shown in Figure 11-12, you can see that the default instance is listed as DEFAULT, and
the named instance is listed as SQL2008 under the property Servers.

247

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

Figure 11-12

You can query all the available SQL Server instances by navigating to the machine name subfolder
PowerServer3 (see Figure 11-13):

Set-Location PowerServer3
Get-Childitem | Select-Object Name

Figure 11-13

You can also query all the registered servers by navigating to the SQLRegistration folder under
SQLServer:\SQL\SQLRegistration, as shown here (see Figure 11-14):

Set-Location SQLServer:\SQLRegistration
Get-ChildItem | select RegisteredServers

Figure 11-14

248

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

If you wanted to list all the available folders under the DEFAULT instance, you could navigate to the
DEFAULT folder using the Get-Location cmdlet and then list all the folders using the Get-ChildItem
cmdlet (see Figure 11-15):

Set-Location \
Set-Location SQL
Set-Location PowerServer3
Set-Location DEFAULT
Get-ChildItem

Figure 11-15

You can keep navigating the hierarchy until the last node available, as shown in Figure 11-16. The follow-
ing example navigates all the way to the ExtendedProperties of the City column in the Person.Address
table in the AdventureWorks2008 database:

Set-Location Databases
Set-Location ‘AdventureWorks2008’
Set-Location Tables
Set-Location Person.Address
Set-Location Columns
Set-Location City
Set-Location ExtendedProperties

Every folder contains different methods that can be invoked and different properties you can access and
set values to. In order to find all the methods and properties available under a hierarchal folder, you can
use the Get-item and Get-member cmdlets, as shown in Figure 11-17.

In order to find all the methods available under the folder Databases, use the following code:

Set-Location SQLSERVER:\SQL
Set-Location PowerServer3\DEFAULT\Databases
Get-Item . | Get-Member -Type Methods

249

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

Figure 11-16

Figure 11-17

You can also get server information about the default instance by using the Get-Item cmdlet and its
properties, as shown here (see Figure 11-18):

Set-Location SQLSERVER:\SQL\PowerServer3\
$server = Get-Item Default
$server.get_VersionString()
$Server.Settings.Properties | Select-Object Name, Value | Format-Table –auto

In addition, you can list the databases and their recovery model on the default instance using the cmdlet
Get-item (see Figure 11-19):

Set-Location SQLSERVER:\SQL\PowerServer3\
$server = Get-Item Default
$server.Databases | Select-Object Name,RecoveryModel | Format-Table –auto

One of the restrictions of the SQL Server PowerShell provider is that you cannot create objects using the
normal provider methods.

250

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

Figure 11-18

Figure 11-19

You have to rely on SQL Server SMO to create objects such as a new database. The following example
creates the database "TestDatabase" on the SQL Server default instance using SQL Server Management
Object (SMO), as shown in Figure 11-20. Chapter 13 illustrates the use of SMO objects in detail.

$Server = New-Object Microsoft.SqlServer.Management.Smo.Server("PowerServer3")
$database = New-Object Microsoft.SqlServer.Management.Smo.Database($server,
"TestDatabase")
$database.create()

Figure 11-20

251

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

You can navigate to the Databases folder and see all the database names by using a simple cmdlet
Get-ChildItem:

Set-Location SQLSERVER:\SQL\PowerServer3\DEFAULT\Databases
Get-ChildItem | Select-Object Name

As shown in Figure 11-21, notice that only user databases were returned.

Figure 11-21

To view the system databases such as master and msdb, include the -force parameter (see Figure 11-22):

Set-Location SQLSERVER:\SQL\PowerServer3\DEFAULT\Databases
Get-ChildItem -force | Select-Object Name

Figure 11-22

You can query the same information about database names from the named instance SQL2008 using the
instance name instead of the instance name DEFAULT (see Figure 11-23):

Get-ChildItem SQLSERVER:\SQL\PowerServer3\SQL2008\Databases -force |
Select-Object Name

252

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

Figure 11-23

The SQL Server PowerShell provider also includes the cmdlet Invoke-Sqlcmd, which is very useful in
querying and executing ad hoc queries and stored procedures.

The following example will query all the data from a table Address in the database AdventureWorks2008
by executing the Invoke-Sqlcmd cmdlet (see Figure 11-24):

Set-Location SQLSERVER:\SQL\PowerServer3\DEFAULT\Databases\AdventureWorks2008

Invoke-Sqlcmd -Query "select top 10 * from Person.Address" | format-table –Auto

Figure 11-24

253

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

You can find all the methods and properties available for the object returned from Invoke-Sqlcmd
by using the Get-Member cmdlet. This example uses the parameter –ServerInstance with the cmdlet
Get-Item. The (Get-Item .)gets the current server instance name (see Figure 11-25).

Set-Location SQLSERVER:\SQL\PowerServer3\DEFAULT\

$myTable =Invoke-Sqlcmd -Query "SELECT * from master.dbo.sysobjects " -ServerInstance
(Get-Item .)

$mMyTtable | get-member

Figure 11-25

The output object from the Invoke-Sqlcmd cmdlet is basically a System.Data.DataRow object. You can
access the row information using the Foreach-Object cmdlet (see Figure 11-26):

$myTable =Invoke-Sqlcmd -Query "SELECT * from master.dbo.sysdatabases "
-ServerInstance (Get-Item .)
$Mytable| Foreach-Object {$_.db_id;$_.name;$_.crdate;} | Format-Table -Auto

In the event that you want to access information from a particular server, you can use the –Servername
parameter with the actual server name (see Figure 11-27):

Invoke-Sqlcmd -Query "SELECT @@servername" -ServerInstance "PowerServer3"

The next example shows how to use SQL Server authentication to access the remote server by executing
the Invoke-Sqlcmd cmdlet using the –User and –Password parameters (see Figure 11-28):

Invoke-Sqlcmd -Query "SELECT @@servername+’: ‘+@@version" -ServerInstance
"PowerServer3" -User "sa" -Password "P@ssw0rd"

From the preceding two examples, you can see that you don’t have to be under a certain folder to execute
the Invoke-Sqlcmd cmdlet if you are passing the actual instance name.

254

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

Figure 11-26

Figure 11-27

Figure 11-28

In order to use SQL Server authentication to access the remote named instance, execute the
Invoke-Sqlcmd cmdlet using the –ServerInstance, –User, and –Password parameters, as shown here
(see Figure 11-29):

Invoke-Sqlcmd -Query "SELECT @@servername+’: ‘+@@version" -ServerInstance
"PowerServer3\SQL2008" -User "sa" -Password "P@ssw0rd"

255

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

Figure 11-29

Encoding and Decoding Uniform Resource
Name (URN)

In some cases you have to use special characters when using SQL providers. In those cases, the
Encode-SqlName and Decode-SqlName cmdlets come in handy. The following example shows a table
named [my\table:s]in the admin database:

use admin
go
create table [my\table:s] (id int, name varchar(100))
go

Try to access the table using the Set-Location cmdlets shown here:

Set-Location SQLSERVER:\SQL\powerserver3\default\databases\admin\tables
Set-Location dbo.my\table:s
Set-Location "dbo.my\table:s"
Set-Location "dbo.[my\table:s]"

If you use the SQLSERVER: drive and navigate to the tables as shown in Figure 11-30, you will have
difficulty because the backslash (\) and colon (:) are special characters.

This problem can be easily solved using the Encode-SqlName cmdlet (see Figure 11-31).

$tbname=(Encode-SqlName "my\table:s")
Set-Location dbo.$tbname

If you already have an encoded SQL name and you want to decode it, you could use the Decode-SqlName
cmdlet (see Figure 11-32):

Decode-SqlName "my%5Ctable%3As"

The SQL Server Management Object (SMO) model builds Uniform Resource Names (URNs) for every
object. You can access the URN information of table objects as shown here (see Figure 11-33):

Set-Location SQLSERVER:\SQL\powerserver3\default\databases\admin\tables
Get-ChildItem | Select-Object Urn

256

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

Figure 11-30

Figure 11-31

Figure 11-32

257

Chapter 11: Windows PowerShell in SQL Server 2008 Environment

Figure 11-33

If you want to convert these URNs to an actual PowerShell provider path, then the Convert-UrnToPath
cmdlet comes in handy. The next example converts one of the URNs listed to the actual PowerShell
provider path (see Figure 11-34):

Convert-UrnToPath "Server[@Name=’POWERSERVER3’]/Database[
@Name=’admin’]/Table[@Name=’my #table’ and @Schema=’dbo’]"

Figure 11-34

Summary
This chapter explained how the sqlps utility and the SQL Server PowerShell provider are used in
a Windows PowerShell environment. It also covered different ways to access PowerShell in a SQL
Server 2008 environment. You now know how to access different objects through the SQLSERVER:
drive and are more familiar with the various cmdlets related to SQL Server, such as Invoke-Sqlcmd,
Convert-UrnToPath, Encode-SqlName, and Decode-SqlName.

You have also seen that you can use SQL Server provider to navigate SQL Server objects in any level
of the hierarchy. Additionally, this chapter showed you how to invoke different methods and access
different properties at any level. The next chapter discusses the SQLSERVER:\SQLPolicy folder in detail.

258

Managing Policies through
SQLSERVER:\SQLPolicy

Policy-Based Management (PBM) is a new feature in SQL Server 2008 that helps SQL Server admin-
istration. It enables database administrators to manage SQL Server instances by intent through
clearly defined policies, thus reducing the potential for administrative errors. In Chapter 11, man-
aging databases and database objects through the SQL folder under the SQLSERVER: drive was
discussed. In this chapter, you will learn how to access Policy-Based Management objects, such as
policies and conditions, through the other folder, SQLSERVER:\SQLPolicy.

This chapter covers the following topics:

❑ SQLSERVER:\SQLPolicy folder

❑ Conditions

❑ Policies

SQLSERVER:\SQLPolicy Folder
If you are not familiar with the Policy-Based Management (PBM) feature in SQL Server 2008, here
is a brief introduction. As mentioned in the introduction to this chapter, Policy-Based Management
helps database administrators manage SQL Server instances by applying clearly defined policies
that reduce the potential for errors. The Policy-Based Framework implements the policies behind
the scenes with a policy engine, SQL Server Agent jobs, SQLCLR, DDL triggers, and Service Broker.
Policies can be applied or evaluated against a single server or a group of servers, improving the scal-
ability of monitoring and administration. The operative terms used in Policy-Based Management
include target, facet, condition, policy, and category.

Before creating a policy, you need to identify the entities in SQL Server to which you want to apply
the policy. The entities are the targets of the policy. A target could be a SQL Server instance, a
database, a table, a login, and so on. You can also apply conditions to filter the targets in a server
instance in order to get a target set, such as all the user databases on an instance.

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
You can define multiple target sets for a policy, and they will all be contained in an object set. Targets
have their own logical properties. For example, a login has a name, a login type (SQL Server or Windows
login), a default database, and the enforcement of password policy.

A set of logical properties that model the behavior or characteristics of a certain type of target is called
a facet. A target can have one or more facets. For example, a server target can have a configuration facet
that includes the options configured by sp_configure, and an audit facet that includes the security login
auditing settings on the server. You can define a Boolean expression that specifies the allowed states of
the properties in a facet. For example, you can specify that the only allowed authentication mode of an
SQL Server instance is Windows Authentication.

This Boolean expression is called a condition. Once you have targets and a condition, you can define a
policy to check the condition against the targets. You can also assign the policy to a user-defined category.
Policy categories help manage the policies and facilitate database subscriptions to all the policies in a
category instead of as individual policies. For more information on Policy-Based Management, you can
refer to SQL Server 2008 Books Online.

All of these PBM objects are available under the SQLSERVER:\SQLPolicy folder. Chapter 11 discussed the
SQLSERVER: drive that is implemented by the SQL Server PowerShell provider. It also demonstrated
how to register the provider and SQL Server cmdlets in your session by adding SQL Server Power-
Shell snap-ins. To make it easier for you to add the snap-ins to your Windows PowerShell session, the
following script can be added to the dbaLib.ps1 file:

###
Add SQL Server Powershell snap-ins if they are not added yet
###
Check if SQL Server Powershell snap-ins have not been added to the current
Windows PowerShell session
if (-not (Get-PSSnapin "SqlServer*" -ea SilentlyContinue)) {

If SQL Server Powershell snap-ins have not been added, then check if they
are registered on the system.

$PSSnapIn=Get-PSSnapin SqlServer* -Registered
if ($PSSnapIn) {

#Add SQL Server 2008 PowerShell snap-ins
$PSSnapIn | foreach { Add-PSSnapin $_.Name }

Load Type Data and Format Data used by SQLPS

if(Test-Path -Path "C:\Program Files\Microsoft SQL Server\100\
Tools\Binn\SQLProvider.Types.ps1xml") {

Update-TypeData "C:\Program Files\Microsoft SQL Server\100\
Tools\Binn\SQLProvider.Types.ps1xml"

}
else {

Write-Host "SQLProvider.Types.ps1xml not found in
C:\Program Files\Microsoft SQL Server\100\Tools\Binn."

Write-Host "Please find the file on your machine and
update the path in dbaLib.ps1."

}

if(Test-Path -Path "C:\Program Files\Microsoft SQL Server\100\
Tools\Binn\SQLProvider.Format.ps1xml") {

Update-FormatData "C:\Program Files\Microsoft

260

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
SQL Server\100\Tools\Binn\SQLProvider.Format.ps1xml"

}
else {

Write-Host "SQLProvider.Format.ps1xml not found in
C:\Program Files\Microsoft SQL Server\100\Tools\Binn."

Write-Host "Please find the file on your machine and update
the path in dbaLib.ps1."

}

}
else {

Write-Output "No SQL Server Powershell snap-ins are registered!"
}

}

If the snap-ins have not been added to the current Windows PowerShell session, then the script
checks whether the snap-ins are registered. If they are registered, then the script adds them with the
Add-PSSnapin cmdlet. The script also adds type data and format data used by SQLPS. By default,
the type data and format data files, SQLProvider.Types.ps1xml and SQLProvider.Format.ps1xml,
reside in the C:\Program Files\Microsoft SQL Server\100\Tools\Binn directory. If you changed the
default location of the SQL Server binaries to a different folder during your SQL Server installation,
please change the Binn path in the dbaLib.ps1 file before running the scripts.

As in Chapter 10, you can just source in the dbaLib.ps1 file to work with the SQLSERVER: drive and the
SQL Server cmdlets that are contained in the snap-ins:

. C:\DBAScripts\dbaLib.ps1

To access the SQLSERVER:\SQLPolicy folder and set the working location to the folder, you can use the
Set-Location cmdlet:

Set-Location SQLSERVER:\SQLPolicy

Following the folder is the computer name. You can connect to the local computer or a remote com-
puter. The commands in the following example connect to the local computer, PowerPC, and a remote
computer, PowerServer3:

Set-Location SQLSERVER:\SQLPolicy\PowerPC
Set-Location SQLSERVER:\SQLPolicy\PowerServer3

The instance name is entered after the computer name. You can connect to any of the instances on the
specific computer. Let’s say you have a default instance and a named instance, INSTANCE1, on the local
computer, PowerPC. You can connect to them individually using the following commands:

Set-Location SQLSERVER:\SQLPolicy\PowerPC\default
Set-Location SQLSERVER:\SQLPolicy\PowerPC\INSTANCE1

You can navigate the Policy-Based Management objects under each instance using the same cmdlets for
the file system:

Get-ChildItem
Get-Item
Move-Item

261

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
Rename-Item
Remove-Item

The following Get-ChildItem cmdlet shows the five types of Policy-Based Management objects available
under the default instance on PowerPC in Figure 12-1:

. C:\DBAScripts\dbaLib.ps1
Set-Location SQLSERVER:\SQLPolicy\PowerPC\default
Get-ChildItem

Figure 12-1

We’ll focus on conditions and policies because they contain the most useful information about the Policy-
Based Management Framework. In order to have sample conditions and policies to work with, import
the policies that are shipped with SQL Server 2008. Right-click Policies under Policy Management, and
select Import Policy. This brings up an Import dialog box. Click the ellipses (. . .) button in the Files to
Import box. Another Select Policy box pops up. Navigate to the directory C:\Program Files\Microsoft
SQL Server\100\Tools\Policies\DatabaseEngine\1033, and select all the files under this folder. Click
Open and the Select Policy box will be closed. Click OK to close the Import dialog box. SQL Server will
import all the policies under that directory (see Figure 12-2).

Figure 12-2

262

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy

Conditions
Each policy has one and only one condition that defines the allowed states of the properties in the facet
shared by the targets of the policy. Before defining a policy, its condition needs to be created first. To view
all the conditions under the default instance on the computer PowerPC, run either one of the following
commands:

. C:\DBAScripts\dbaLib.ps1
Set-Location SQLSERVER:\SQLPolicy\PowerPC\default\Conditions
Get-ChildItem | Sort-Object Name

Alternately, you can run the next command:

. C:\DBAScripts\dbaLib.ps1
Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\Conditions |
Sort-Object Name

Part of the output is shown in Figure 12-3. You can use the Select-Object cmdlet to select the
ExpressionNode property, which contains the Boolean expression set in the condition, and the facet
property to which the expression applies.

Figure 12-3

Take the Auto Close Disabled condition as an example:

Get-ChildItem | Where-Object {$_.Name -eq ‘Auto Close Disabled’ } |
Select-Object Name, ExpressionNode, Facet | Format-List

263

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
As shown in Figure 12-4, this condition tests the @AutoClose property of the
IDatabasePerformanceFacet facet.

Figure 12-4

If the AutoClose property is set to False, i.e., the database is not closed automatically, then the condition
is not violated.

Some conditions contain complex expressions using functions such as ExecuteSql()or ExecuteWql(). To
list these conditions, check whether the HasScript property is not NULL with the Where-Object cmdlet
(see Figure 12-5):

Get-ChildItem | Where-Object {$_.HasScript} | Select-Object Name, ExpressionNode

Figure 12-5

You may also want to know the history of a condition, such as the creator, the creation date, the
last time it was modified, and who modified it. To do that, you can just select the CreatedBy,
CreateDate, ModifiedBy and DataModified properties and format the results with the Format-List
cmdlet:

Get-ChildItem | Format-List CreatedBy, CreateDate, ModifiedBy, DateModified

The output is shown in Figure 12-6. As you can see, the policies were created on September 19, 2008, and
none of them have been modified.

264

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy

Figure 12-6

You can also create, alter, or drop a condition using the methods of the Condition class.

For example, you can create a condition called No server access using the Create method. This
condition can be applied to certain logins to prevent them from accessing the SQL Server instance. You
need to first create a policy store instance of the Microsoft.SqlServer.Management.Dmf.PolicyStore .NET
class that represents the SQL Server instance. In case you are curious about the name DMF, Policy-Based
Management (PBM) used to be called Declarative Management Framework (DMF) during SQL Server
2008 development. This policy store instance will contain the condition. Next, you assign to the condition
a facet and an expression containing the properties from the facet; and then you create the new
condition by invoking the Create method. Finally, you verify success of the creation with the
Get-ChildItem cmdlet (the output is shown in Figure 12-7):

Create a policy store instance to represent the default instance on PowerPC
$sqlConnection=New-Object System.Data.SqlClient.SqlConnection
$sqlConnection.ConnectionString="Server=PowerPC;Database=master;Integrated
Security=True"
$storeConnection=New-Object Microsoft.SqlServer.Management.Sdk.Sfc
.SqlStoreConnection($sqlConnection)
$store=New-Object Microsoft.SqlServer.Management.Dmf.PolicyStore ($storeConnection)

Create the new condition "No server access"
$condition=New-Object Microsoft.SqlServer.Management.Dmf.Condition
($store, ‘No server access’)
$condition.ExpressionNode=’@HasAccess = False()’
$condition.Facet=’Login’
$condition.Create()
Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\Conditions | Where-Object
{$_.Name -eq ‘No server access’ } | Format-List *

265

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy

Figure 12-7

You can also use the Drop method to drop the newly created condition, and confirm the drop with
Get-ChildItem, as shown in Figure 12-8:

$condition=Get-ChildItem –path SQLSERVER:\SQLPolicy\PowerPC\default\Conditions |
Where-Object {$_.Name -eq ‘No server access’}
$condition.Drop()
#To confirm the condition has been dropped.
Get-ChildItem –path SQLSERVER:\SQLPolicy\PowerPC\default\Conditions | Where-Object
{$_.Name -eq ‘No server access’}

Figure 12-8

266

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
If for some reason the Drop method does not work, try to open another Windows PowerShell console and
run the commands again.

You can also use the ScriptCreate, ScriptAlter, and ScriptDrop methods to generate the SQL scripts
that can be used to create, alter, and drop a condition, respectively. The following recreates the No server
access condition and generates the scripts for it:

Create the new condition "No server access"
$sqlConnection=New-Object System.Data.SqlClient.SqlConnection
$sqlConnection.ConnectionString="Server=PowerPC;Database=master;Integrated
Security=True"
$storeConnection=New-Object Microsoft.SqlServer.Management.Sdk.Sfc.
SqlStoreConnection($sqlConnection)
$store=New-Object Microsoft.SqlServer.Management.Dmf.PolicyStore ($storeConnection)
$condition=New-Object Microsoft.SqlServer.Management.Dmf.Condition ($store,
‘No server access’)
$condition.ExpressionNode=’@HasAccess = False()’
$condition.Facet=’Login’
$condition.Create()

Generate SQL scripts that can be used to create, alter and drop the condition
$condition.ScriptCreate().ToString()
$condition.ScriptAlter().ToString()
$condition.ScriptDrop().ToString()

However, notice that in Figure 12-9 the create and alter scripts are not complete.

Figure 12-9

267

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
They do not include the facet parameter and the expression parameter that should be specified in XML
format.

Policies
A condition is just a Boolean expression. The expected behavior it specifies can only be enforced until
it is used in a policy. To view all the policies under the default instance on the computer PowerPC, set
the current location to the Policies node, and get the policies under the location with the Get-ChildItem
cmdlet. Alternatively, just pass the path to the Policies node to the –path parameter in the Get-
ChildItem cmdlet. Then sort the policy names alphabetically with the Sort-Object cmdlet:

Set-Location SQLSERVER:\SQLPolicy\PowerPC\default\Policies
Get-ChildItem | Sort-Object Name

Another alternative is to use the –path parameter:

Get-ChildItem –path SQLSERVER:\SQLPolicy\PowerPC\default\Policies |
Sort-Object Name

As shown in Figure 12-10, all the policies that are shipped with SQL Server 2008 have been imported into
the default instance.

Figure 12-10

Let’s look at the properties of the Policy class. Take the Last Successful Backup Date policy as an
example. You can use the Where-Object cmdlet to filter the particular policy based on its Name property.
Then format the properties with the Format-List cmdlet:

268

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
$pbk=Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\Policies |
Where-Object {$_.Name -eq ‘Last Successful Backup Date’}
$pbk | Format-List AutomatedPolicyEvaluationMode, CategoryId, Condition,
Description, Enabled, HasScript, HelpLink, HelpText, ID, IdentityKey, ModifiedBy,
Name, ObjectSet, Parent, RootCondition, ScheduleUid

As shown in Figure 12-11, the policy has a value of None for the AutomatedPolicyEvaluationMode prop-
erty, which means it is evaluated only on demand.

Figure 12-11

The possible values of the property are listed in Table 12-1.

The policy category ID is 2, as shown in the CategoryId property. To get more information
on the policy category, you need to look at the associated object with an ID of 2 under the
SQLSERVER:\SQLPolicy\PowerPC\default\PolicyCategories path:

Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\PolicyCategories |
Where-Object {$_.ID -eq 2} | Select-Object Name, MandateDatabaseSubscriptions

269

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
Table 12-1: AutomatedPolicyEvaluationMode Values

Value Execution Mode

CheckOnChanges Uses event notification to evaluate the policy when changes are made.

CheckOnSchedule Uses a SQL Server Agent job to schedule the evaluations of the policy.

Enforce Uses DDL triggers to evaluate and prevent policy violations.

None The policy is evaluated only on demand.

As shown in Figure 12-12, the category of this policy is called Microsoft Best Practices: Maintenance.

Figure 12-12

Every database is mandated to subscribe to the policies in this category, as
MandateDatabaseSubscriptions is set to True.

Referring back to Figure 12-11, look at the rest of the properties. The policy is using the Safe Last Backup
Date condition, and is disabled for automation, as the Enabled property is set to False. It does not have
scripts. The ID of this policy is 29.

The name of the associated object set is Last Successful Backup Date ObjectSet. The object set can
be found under the SQLSERVER:\SQLPolicy\PowerPC\default\ObjectSets path using the following
command:

Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\ObjectSets |
Where-Object {$_.Name -eq ‘Last Successful Backup Date_ObjectSet’}

However, as shown in Figure 12-13, the preceding command gives you the facet for the object set
only. It doesn’t provide much information about the target sets contained in the object set because the
TargetSets property is a collection.

You can use the Serialize method to get the XML presentation of the target sets. The Serialize method
populates an XmlWriter object, so you first define an XmlTextWriter object:

$stringWriter = New-Object System.IO.StringWriter
$xmlWriter = New-Object System.Xml.XmlTextWriter($stringWriter)
$xmlWriter.Formatting = "indented"
$xmlWriter.Indentation = 2

270

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
$os= Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\ObjectSets |
Where-Object {$_.Name -eq ‘Last Successful Backup Date_ObjectSet’}
$os.Serialize($xmlWriter)
$xmlWriter.Flush()
$stringWriter.Flush()
Write-Output $stringWriter.ToString()
$stringWriter.Close()
$xmlWriter.Close()

Figure 12-13

The entire XML string shown in Figure 12-14 is saved in the objectSet.xml file.

Figure 12-14

271

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
Alternately, you can print out the XML data for each target set in the object set separately. The following
script uses foreach to loop through the collection of target sets, and uses the Serialize method of each
target set to flush out the XML presentation to the XMLTextWriter:

$stringWriter = New-Object System.IO.StringWriter
$xmlWriter = New-Object System.Xml.XmlTextWriter($stringWriter)
$xmlWriter.Formatting = "indented"
$xmlWriter.Indentation = 2
$os= Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\ObjectSets |
Where-Object {$_.Name -eq ‘Last Successful Backup Date_ObjectSet’}
foreach ($t in $os.TargetSets)
{

$stringWriter = New-Object System.IO.StringWriter
$xmlWriter = New-Object System.Xml.XmlTextWriter($stringWriter)
$xmlWriter.Formatting = "indented"
$xmlWriter.Indentation = 2
$t.Serialize($xmlWriter)
$xmlWriter.Flush()
$stringWriter.Flush()
Write-Output $stringWriter.ToString()
$stringWriter.Close()
$xmlWriter.Close()

}

Figure 12-15 shows only part of the output.

Figure 12-15

272

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
For the Last Successful Backup Date policy, there is only a target set. The entire XML string for the
target set shown in Figure 12-15 is saved in the targetSet.xml file.

Now look at the DMF:TargetSet node in Microsoft Word (see Figure 12-16). The target set includes targets
of type Server/Database. Because no condition is applied to the Server/Database level, all the databases
are included.

Figure 12-16

You can also create, alter, or drop a policy using the methods of the Policy class. For example, sup-
pose you want to create a policy called Domain guest cannot access server. This policy uses the No
server access condition you created earlier, and applies it to a login called POWERDOMAIN\Guest to cap-
ture violations that allow domain guests to connect to the SQL Server. To filter the login, you need to
create a condition that uses the Login facet and includes only the POWERDOMAIN\Guest login. The script,
CreatePolicy.ps1, is shown here:

$domainName="POWERDOMAIN"
$hostName="PowerPC"
$instanceName="default" # "default"
for default instance

Create a policy store instance to represent the default instance on PowerPC
$sqlConnection=New-Object System.Data.SqlClient.SqlConnection
$sqlConnection.ConnectionString="Server=$serverName;Database=master;Integrated
Security=True"
$storeConnection=New-Object Microsoft.SqlServer.Management.Sdk.
Sfc.SqlStoreConnection($sqlConnection)

273

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
$store=New-Object Microsoft.SqlServer.Management.Dmf.PolicyStore ($storeConnection)

Create a condition called "No server access" that prevents logins
from accessing the SQL Server instance.
if (-not (Get-ChildItem -path SQLSERVER:\SQLPolicy\$hostName\
$instanceName\Conditions | Where-Object {$_.Name -eq ‘No server access’}))
{

$condition=New-Object Microsoft.SqlServer.Management.Dmf.Condition ($store,
‘No server access’)

$condition.ExpressionNode=’@HasAccess = False()’
$condition.Facet=’Login’
$condition.Create()

}

Create a condition called "Domain Guest Login" to filter only the
POWERDOMAIN\Guest login.
if (-not (Get-ChildItem -path SQLSERVER:\SQLPolicy\$hostName\$instanceName\
Conditions | Where-Object {$_.Name -eq ‘Domain Guest Login’}))
{

$condition=New-Object Microsoft.SqlServer.Management.Dmf.Condition
($store, ‘Domain Guest Login’)

$condition.ExpressionNode="@Name = ‘$domainName\Guest’"
$condition.Facet="Login"
$condition.Create()

}

Create an object set that uses the "Domain Guest Login" condition
to filter only the POWERDOMAIN\Guest login.
if (-not (Get-ChildItem -path SQLSERVER:\SQLPolicy\$hostName\$instanceName\
ObjectSets | Where-Object {$_.Name -eq ‘Domain
guest cannot access server_ObjectSet’}))
{

$objectSet=New-Object Microsoft.SqlServer.Management.Dmf.ObjectSet($store,
‘Domain guest cannot access server_ObjectSet’)

$objectSet.Facet="Login"
$targetSet=$objectSet.TargetSets["Server/Login"]
$targetSet.Enabled=1
$targetSet.SetLevelCondition($targetSet.GetLevel("Server/Login"),

"Domain Guest Login")
$objectSet.Create()

}

Create a policy called "Domain guest cannot access server"
that applies the condition "No server access" to the object set containing
only the POWERDOMAIN\Guest login.
#The execution mode of this policy is set to None - On Demand.
if (-not (Get-ChildItem -path SQLSERVER:\SQLPolicy\$hostName\
$instanceName\Policies | Where-Object {$_.Name -eq
‘Domain guest cannot access server’}))
{

$policy=New-Object Microsoft.SqlServer.Management.Dmf.Policy ($store,
‘Domain guest cannot access server’)

$policy.Condition="No server access"
$policy.AutomatedPolicyEvaluationMode="None"
$policy.ObjectSet="Domain guest cannot access server_ObjectSet"

274

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
$policy.Create()

}

Confirm the policy and its target sets have been created correctly.
(Get-ChildItem -path SQLSERVER:\SQLPolicy\$hostName\$instanceName\ObjectSets `
| Where-Object {$_.Name -eq ‘Domain guest cannot access
server_ObjectSet’}).TargetSets `
| foreach -process { $_.GetLevelsSorted() }

Get-ChildItem -path SQLSERVER:\SQLPolicy\$hostName\$instanceName\Policies `
| Where-Object {$_.Name -eq ‘Domain guest cannot access server’} `
| Select-Object AutomatedPolicyEvaluationMode, Condition, Enabled, ID,

IdentityKey, Name, ObjectSet, Parent, CreateDate, CreatedBy

Now run the script:

. C:\DBAScripts\dbaLib.ps1
C:\DBAScripts\CreatePolicy.ps1

As shown in Figure 12-17, the policy Domain guest cannot access server has been created.

Figure 12-17

Its target set filters logins based on the Domain Guest Login condition at the Server/Login level. The
policy tests the No server access condition against its target set. The policy is evaluated on demand, as
its AutomatedPolicyEvaluationMode is set to None. You can change the mode and schedule its evaluation
based on auditing requirements.

To drop this policy and its associated object set, use the Get-ChildItem cmdlet to get all the policies, and
filter the Domain guest cannot access server policy object with the Where-Object cmdlet, based on the
Name property. Next, invoke the Drop method on the policy to drop it. Then confirm the success of the
drop:

$policy=Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\Policies |
Where-Object {$_.Name -eq ‘Domain guest cannot access server’}
$policy.Drop()
Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\Policies | Where-Object
{$_.Name -eq ‘Domain guest cannot access server’}

275

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
As shown in Figure 12-18, the Get-ChildItem cmdlet returns nothing. The policy has been dropped.

Figure 12-18

You can use the EvaluationHistories, EnumPolicyExecutionHistoryDetail, and
EnumPolicyExecutionHistoryDetailResults methods to view the execution history of a pol-
icy. For example, to view the history of the Last Successful Backup Date policy, query the
EvaluationHistories property. This property contains a collection. Use a for loop to loop through the
collection and get the StartDate, EndDate, ID, and Result of each evaluation:

$pbk=Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\Policies |
Where-Object {$_.Name -eq ‘Last Successful Backup Date’}
$histories=$pbk.EvaluationHistories
for ($i=1; $i -le $histories.Count; $i++) {
$histories.Item($i) | Format-List PolicyName, StartDate, EndDate, ID, Result
}

As shown in Figure 12-19, three evaluations of the policy are stored in the history. The start date, end
date, ID, and result of each evaluation are listed. The ID property is actually the position of the evaluation
in the EvaluationHistories collection.

Figure 12-19

276

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
As you can see, the evaluation with an ID of 2 has a False result. You can also get the result by querying
the Result property of the second item in the EvaluationHistories collection:

$histories.Item(2).Result

As shown in Figure 12-20, the evaluation with an ID of 2 failed.

Figure 12-20

To find out why the evaluation fails, you can look at the ConnectionEvaluationHistories property.
Because a policy can be evaluated against a single server or a group of servers, each member of the
property has the information for a specific server. Each ConnectionEvaluationHistories member
has an EvaluationDetails property that has the evaluation information for all the targets of the pol-
icy. Each member of the EvaluationDetails property has the evaluation details for a target in the
ResultDetail property, and the target information in the TargetQueryExpression property. To loop
through the ConnectionEvaluationHistories and EvaluationDetails collections, you need to use the
GetEnumerator method to get two enumerators, and then use the MoveNext method and the Current
property of the enumerators to iterate through the collections:

$evalHist=$histories.Item(2).ConnectionEvaluationHistories
$enum1=$evalHist.GetEnumerator()
if ($enum1.MoveNext()) {

$details=$evalHist.Item($enum1.Current.ID).EvaluationDetails
$enum2=$details.GetEnumerator()
if ($enum2.MoveNext()) {

$details.Item($enum2.Current.ID) | Format-List ResultDetail,
TargetQueryExpression, Result

}
}

Figure 12-21 shows the part of the output for the admin database.

Here, the policy is evaluated against all the databases, including the admin database listed in the
TargetQueryExpression property. The admin database violates the policy, thus the result is False.
The details of the evaluation are shown in the ResultDetail property. The Boolean expression of the
evaluation uses the operator GE (greater than) to compare the database attribute LastBackupDate with
DateAdd(’day’, -1, GetDate()).

The ScriptCreate, ScriptAlter, and ScriptDrop methods of the Policy class generate the SQL scripts
that can be used to create, alter, and drop a policy, respectively. Because the associated object set needs
to be created before the policy can be created, you also generate the object set creation script here. This
example uses the Guest Permissions policy:

Get an object associated with the Guest Permissions policy
$policy=Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\Policies |
Where-Object {$_.Name -eq ‘Guest Permissions’}

277

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
$policy.ScriptCreate().ToString()
$policy.ScriptAlter().ToString()
$policy.ScriptDrop().ToString()

Get the object set for the Guest Permissions policy
$objectSet=Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\ObjectSets |
Where-Object {$_.Name -eq $policy.ObjectSet.ToString()}
$objectSet.ScriptCreate().ToString()

Figure 12-21

Part of the output is shown in Figure 12-22.

How do you evaluate a policy manually? The Evaluate method of the Policy class did not work at the
time this chapter was written. However, you can use the Invoke-PolicyEvaluation cmdlet provided by
the SqlServerCmdletSnapin100 snap-in. The policy to be evaluated is specified in the –Policy parameter
of this cmdlet. The –Policy parameter can take policies stored in an SQL Server instance or in XML files.
It can even take a string that specifies the names of one or more XML policy files, or a set of policy
objects, or a set of FileInfo objects that represent XML policy files. The policy objects can be passed
from a pipeline as well.

278

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy

Figure 12-22

The cmdlet also has a -AdHocPolicyEvaluationMode parameter to specify the evaluation modes. The
possible values are as follows:

❑ Check: Reports the compliance status of the target objects using the credentials of the current
login. Does not reconfigure any objects. This is the default setting.

❑ CheckSqlScriptAsProxy: Reports the compliance status of the target objects using the creden-
tials of the ##MS PolicyTSQLExecutionLogin## proxy login. Does not reconfigure any objects.

❑ Configure: Reports the compliance status of the target objects using the credentials of the cur-
rent login. Reconfigures any settable and deterministic options that are not in compliance with
the policies.

The target sets of the policy evaluation can be specified in two ways. You can evaluate the policy against
all the qualified objects on a server instance specified in the –TargetServerName parameter. To fine-tune
the target set further, use the –TargetExpression parameter.

You can use the -TargetObjects parameter to specify a PSObject or an array of PSObjects that define
the set of SQL Server objects.

279

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
The next example shows how to evaluate the Database Page Status policy against the admin database
on the default instance to ensure that it has no suspect database pages. First, you get a policy object
that represents the Database Page Status policy, and pass it to the Invoke- PolicyEvaluation cmdlet.
In the TargetServer parameter, specify the default instance PowerPC, and in the TargetExpression
parameter, specify the filter Server[@Name=’PowerPC’]/Database[@Name=’admin’] to narrow down
the targets on the instance to only the admin database. Then you query the Result property from the
evaluation.

Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\Policies |
Where-Object {$_.Name -eq ‘Database Page Status’} | Invoke-PolicyEvaluation
-TargetServer "PowerPC" –TargetExpression "Server[@Name=’PowerPC’]/Database
[@Name=’admin’]" | Format-Table Result –AutoSize

Figure 12-23 shows that the result of the evaluation is True, which means that the admin database does
not have any suspect database pages.

Figure 12-23

You can also pass a PSObject to the TargetObjects property to represent the admin database to the
Invoke-PolicyEvaluation cmdlet. The first line of the following script uses the Get-Item cmdlet to get
an object that represents the admin database (see Figure 12-24):

$db=Get-Item SQLSERVER:\SQL\PowerPC\default\Databases\admin
Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\Policies |
Where-Object {$_.Name -eq ‘Database Page Status’} |
Invoke-PolicyEvaluation –TargetObjects $db | Format-Table Result -AutoSize

Figure 12-24

280

Chapter 12: Managing Policies through SQLSERVER: \SQLPolicy
There is another database called admin2 on the same SQL Server instance. This database was intentionally
corrupted. Suppose that you want to evaluate the Database Page Status policy against the database. You
can run the following command:

$db=Get-Item SQLSERVER:\SQL\PowerPC\default\Databases\admin2
Get-ChildItem -path SQLSERVER:\SQLPolicy\PowerPC\default\Policies | Where-Object
{$_.Name -eq ‘Database Page Status’} | Invoke-PolicyEvaluation –TargetObjects
$db | Format-Table Result –AutoSize

Figure 12-25 shows the evaluation result is False, which means that the admin2 database does have
suspect database pages.

Figure 12-25

Summary
This chapter explored the Policy-Based Management objects stored under the SQLSERVER:\SQLPolicy
folder. It demonstrated how to query, create, and drop policies and conditions, and the associated object
sets and target sets with Windows PowerShell. In addition, it demonstrated how to generate scripts for
existing objects, and how to evaluate policies manually with the Invoke-PolicyEvaluation cmdlet.
Chapter 20 follows the same approach and uses Windows PowerShell scripts to define policies on multi-
ple servers, thus enforcing SQL Server standards with minimum effort.

281

Windows PowerShell
and SMO

In the previous chapters, you learned how to connect and query SQL Server 2008 instances using
the new features SQLPS and the SQL and SQLPolicy folder under the SQLSERVER: drive. In this
chapter, you will use Windows PowerShell in conjunction with .NET class libraries to connect to
SQL Server. You will also use SQL Server Management Objects (SMO) to connect to SQL Server
and access the SQL Server–related objects, features, and functionalities. This chapter covers the
alternative ways to connect to SQL Server.

The PowerShell and SMO portions of this chapter cover the following:

❑ PowerShell and the SQLConnection .NET class

❑ Working with SQL Server using SMO

❑ Working with databases using SMO

❑ Working with tables using SMO

❑ Backup and Restore with SMO

PowerShell and the SQLConnec tion
.NET Class

The .NET class System.Data.SqlClient.SqlConnection represents an open connection to a SQL
Server database. You can leverage this class via PowerShell to connect to SQL Server, retrieve data,
and execute procedures.

Chapter 13: Windows PowerShell and SMO

The following example retrieves the SQL Server version number from the default instance:

#Let’s set the location to the script folder C:\DBAScripts

Set-Location C:\DBAScripts
$SqlConnection = New-Object System.Data.SqlClient.SqlConnection
$SqlConnection.ConnectionString = "Server=PowerServer3;Database=master;Integrated
Security=True"
$SqlCmd = New-Object System.Data.SqlClient.SqlCommand
$SqlCmd.CommandText = "Select @@version as SQLServerVersion"
$SqlCmd.Connection = $SqlConnection
$SqlAdapter = New-Object System.Data.SqlClient.SqlDataAdapter
$SqlAdapter.SelectCommand = $SqlCmd
$DataSet = New-Object System.Data.DataSet
$SqlAdapter.Fill($DataSet)
$SqlConnection.Close()
$DataSet.Tables[0]

The results are similar to the screenshot shown in Figure 13-1, which shows the version number.

Figure 13-1

The preceding example used four classes:

❑ System.Data.SqlClient.SqlConnection

❑ System.Data.SqlClient.SqlCommand

❑ System.Data.SqlClient.SqlDataAdapter

❑ System.Data.DataSet

The SQLConnection class represents an open connection to a SQL Server database. The SQLCommand
class represents a Transact-SQL statement or stored procedure to execute against a SQL Server
database. The SQLDataAdapter class represents a set of data commands and a database connection

284

Chapter 13: Windows PowerShell and SMO

that are used to fill the dataset class. The data set represents in-memory cache data. Basically, the
script first opens a connection to the default instance PowerServer3. Next, it creates a command
object and sets the T-SQL statement to "select @@version". Then the script creates a data adapter
to fill a data set with the results from the SqlCommand. Finally, the data set is displayed. You will use
these four classes throughout this chapter.

You can also connect to a named instance of the SQL Server using the same .NET Framework class
library System.Data.SqlClient.SqlConnection via PowerShell, as shown here:

$SqlConnection = New-Object System.Data.SqlClient.SqlConnection
$SqlConnection.ConnectionString = "Server=PowerServer3\SQL2008;Database=master;
Integrated Security=True"
$SqlCmd = New-Object System.Data.SqlClient.SqlCommand
$SqlCmd.CommandText = "select @@version as SQLServerVersion"
$SqlCmd.Connection = $SqlConnection
$SqlAdapter = New-Object System.Data.SqlClient.SqlDataAdapter
$SqlAdapter.SelectCommand = $SqlCmd
$DataSet = New-Object System.Data.DataSet
$SqlAdapter.Fill($DataSet)
$SqlConnection.Close()
$DataSet.Tables[0]

Note that PowerServer3 is the host name and SQL2008 is the instance name in this example.

The results of the T-SQL command "select @@version as SQLServerVersion" are shown in
Figure 13-2.

Figure 13-2

You can also execute a stored procedure and retrieve the results from a named instance of the SQL
Server using the same .NET Framework class library System.Data.SqlClient.SqlConnection via
PowerShell, as shown here:

$SqlConnection = New-Object System.Data.SqlClient.SqlConnection
$SqlConnection.ConnectionString = "Server=PowerServer3\SQL2008;Database=master;

285

Chapter 13: Windows PowerShell and SMO

Integrated Security=True"
$SqlCmd = New-Object System.Data.SqlClient.SqlCommand
$SqlCmd.CommandText = "sp_who"
$SqlCmd.Connection = $SqlConnection
$SqlAdapter = New-Object System.Data.SqlClient.SqlDataAdapter
$SqlAdapter.SelectCommand = $SqlCmd
$DataSet = New-Object System.Data.DataSet
$SqlAdapter.Fill($DataSet)
$SqlConnection.Close()
$DataSet.Tables[0]

You can see the results of the stored procedure "sp_who" in Figure 13-3.

Figure 13-3

Because you often want to know the version of SQL Server that is installed, the next example cre-
ates a generic PowerShell script Get-SQLVersion.ps1, which can be used to retrieve the version
number of any SQL Server instance. This example basically guides you through executing a T-SQL
command:

Param (
[string] $SQLSERVER

)
$SqlConnection = New-Object System.Data.SqlClient.SqlConnection
$SqlConnection.ConnectionString = "Server=$SQLSERVER;Database=master;Integrated
Security=True"
$SqlCmd = New-Object System.Data.SqlClient.SqlCommand
$SqlCmd.CommandText = "Select @@version as SQLServerVersion"
$SqlCmd.Connection = $SqlConnection
$SqlAdapter = New-Object System.Data.SqlClient.SqlDataAdapter
$SqlAdapter.SelectCommand = $SqlCmd
$DataSet = New-Object System.Data.DataSet
$SqlAdapter.Fill($DataSet)

286

Chapter 13: Windows PowerShell and SMO

$SqlConnection.Close()
$DataSet.Tables[0]

You can execute the Get-SQLVersion.ps1 PowerShell script by passing the SQL Server instance
name:

.\Get-SQLVersion.ps1 "PowerServer3"

.\Get-SQLVersion.ps1 "PowerServer3\SQL2008"

Figure 13-4 reveals the results of the "select @@version":

Figure 13-4

It is common practice to navigate all the database objects in a given database. The next example
creates the PowerShell script to retrieve all the table names from a SQL Server database. The script
takes two parameters, server name and database name, and uses them to construct the connection
string:

Param (
[string] $SQLSERVER,
[string] $DATABASE

)
$SqlConnection = New-Object System.Data.SqlClient.SqlConnection
$SqlConnection.ConnectionString = "Server=$SQLSERVER;Database=$DATABASE;Integrated
Security=True"
$SqlCmd = New-Object System.Data.SqlClient.SqlCommand
$SqlCmd.CommandText = "Select name from sysobjects where type = N’U’"
$SqlCmd.Connection = $SqlConnection
$SqlAdapter = New-Object System.Data.SqlClient.SqlDataAdapter
$SqlAdapter.SelectCommand = $SqlCmd
$DataSet = New-Object System.Data.DataSet
$SqlAdapter.Fill($DataSet)
$SqlConnection.Close()
$DataSet.Tables[0]

Next, retrieve the table names from the named instance SQL2008, as shown here:

.\Get-Tables.ps1 "PowerServer3\SQL2008" "msdb"

287

Chapter 13: Windows PowerShell and SMO

Figure 13-5 shows the results of the Get-Tables PowerShell script:

Figure 13-5

When it comes to SQL Server stored procedures that accept parameters, you also need to set the
CommandType property to StoredProcedure, and define the parameters in the Parameters property.

As a DBA, it is your task to create backups on all the databases. The following example creates
a small stored procedure uspBackupDB in the master database of the default SQL Server instance
that would take backups of any database in a given location. This stored procedure accepts three
parameters: a database name, a backup folder path, and a backup type. The backup type has three
possible values — Full, Tran, or Diff — that correspond to full database backup, transaction log
backup, and differential database backup, respectively:

set quoted_identifier off
go
USE [master]
GO
/****** Object: StoredProcedure [dbo].[uspBackupDB] Script Date: 08/31/2008
21:43:41 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N’[dbo].[uspBackupDB]’) AND type in (N’P’, N’PC’))
DROP PROCEDURE [dbo].[uspBackupDB]
GO
USE [master]
GO
/****** Object: StoredProcedure [dbo].[uspBackupDB] Script Date: 08/31/2008
21:34:59 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER OFF
GO
Create proc [dbo].[uspBackupDB] @databasename varchar(128), @FolderPath
varchar(1000), @BackupType varchar(4)
as
set quoted_identifier off
declare @query varchar(2000)
If @Backuptype="Full"
begin
set @query ="backup database "+@databasename+" to disk =

288

Chapter 13: Windows PowerShell and SMO

‘"+@Folderpath+@databasename+"_"+convert(varchar(8),getdate(),112)+".bak’"
end
If @Backuptype="Tran"
begin
set @query ="backup database "+@databasename+" to disk =
‘"+@Folderpath+@databasename+"_"+convert(varchar(8),getdate(),112)+".trn’"
end
If @Backuptype="Diff"
begin
set @query ="backup database "+@databasename+" to disk =
‘"+@Folderpath+@databasename+"_"+convert(varchar(8),getdate(),112)+".Dif’"
end
print @query
exec (@query)
GO

Next, create a PowerShell script Backup-DataBase.ps1. This script connects to a SQL Server
instance and executes the uspBackupDB stored procedure. You can copy the code from the
uspBackupDB.sql file:

Param (
[string] $SQLSERVER,
[string] $DATABASE,
[string] $LOCATION,
[string] $BACKTUPTYPE

)

$SQL="master.dbo.uspBackupDB"
#write-host $SQL
$conn = New-Object System.Data.SqlClient.SqlConnection("Data
Source=$SQLSERVER;Initial Catalog=master;Integrated Security=SSPI")
$cmd = New-Object System.Data.SqlClient.SqlCommand("$SQL", $conn)
$cmd.CommandType = [System.Data.CommandType]’StoredProcedure’
$cmd.Parameters.Add("@databasename",[System.Data.SqlDbType]"VarChar",128) | Out-Null
$cmd.Parameters.Add("@Folderpath",[System.Data.SqlDbType]"VarChar",1000) | Out-Null
$cmd.Parameters.Add("@BackupType",[System.Data.SqlDbType]"VarChar",4) | Out-Null
$cmd.Parameters["@databasename"].Value = $DATABASE
$cmd.Parameters["@Folderpath"].Value = $LOCATION
$cmd.Parameters["@BackupType"].Value = $BACKTUPTYPE
$conn.Open()
$cmd.ExecuteNonQuery() | Out-Null
$conn.Close()

Now you can create a folder ‘‘Backup’’ on the C: drive to store all the backup files. Here you are
going to use the cmdlet New-Item to create the folder:

New-Item -Path C:\ -Name Backup -Type directory

Now execute the PowerShell script backup-database.ps1 and take a backup of the master database
as shown here:

.\Backup-DataBase.ps1 PowerServer3 AdventureWorks2008 c:\Backup\ Full

.\Backup-DataBase.ps1 PowerServer3 AdventureWorks2008 c:\Backup\ Tran

.\Backup-DataBase.ps1 PowerServer3 AdventureWorks2008 c:\Backup\ Diff

289

Chapter 13: Windows PowerShell and SMO

This script takes full backup, transactional log backup, and differential backup, as shown in
Figure 13-6 and Figure 13-7.

Figure 13-6

Figure 13-7

This section has covered the connection to SQL Server and various methods of accessing SQL Server
databases and objects using the SqlConnection .NET class, but there is another method of connect-
ing to SQL Server and accessing information: SQL SMO. The next section covers SMO in detail.

Working with SQL Ser ver using SMO
You can leverage the class library SQL Server SMO via PowerShell to connect to SQL server and manip-
ulate and retrieve data. This section examines some of the useful properties and methods of SMO, which
in turn retrieves information from SQL Server.

Before you use the SMO objects, you need to load the SMO class library, the Microsoft.SqlServer.Smo.dll
assembly, as you did in Chapter 9. The LoadWithPartialName method loads an assembly from the
application directory or from the global assembly cache using a partial name. You can connect to a SQL
Server instance using SQL Server SMO as shown here:

[System.Reflection.Assembly]::LoadWithPartialName(’Microsoft.SqlServer.SMO’) |
Out-Null
$smovar = New-Object (’Microsoft.SqlServer.Management.Smo.Server’)
‘PowerServer3\SQL2008’

290

Chapter 13: Windows PowerShell and SMO

Note that PowerServer3 is the host name of the computer and SQL2008 is the named instance. The results
look like Figure 13-8.

Figure 13-8

Methods and Properties
You can use the Get-Member cmdlet to retrieve all of the properties and methods of the SMO object:

$smovar | Get-Member

The results are shown in Figure 13-9.

Figure 13-9

Getting Version Information
The next example uses the Version, VersionMajor, VersionMinor, and VersionString properties to get
the SQL Server version number, as shown in Figure 13-10:

$smovar.Version
$smovar.VersionMajor
$smovar.VersionMinor
$smovar.VersionString

291

Chapter 13: Windows PowerShell and SMO

Figure 13-10

SQL Server SPID Information
You can also retrieve all the SPID information connected to SQL Server using the EnumProcess()method,
as shown in the following example. The equivalent SQL command would be sp_who.

$smovar.EnumProcesses() | Select-Object Spid, Command, Program | Format-Table -auto

The results appear in Figure 13-11.

Figure 13-11

292

Chapter 13: Windows PowerShell and SMO

SQL Server Server-Related Information
The following example shows how you can get SQL Server–related properties such as error log path,
data file path, edition, and more:

$smovar.Name
$smovar.InstanceName
$smovar.OSVersion
$smovar.Product
$smovar.ProductLevel
$smovar.SqlCharSetName
$smovar.CollationName
$smovar.MasterDBPath
$smovar.MasterDBLogPath
$smovar.LoginMode
$smovar.ErrorLogPath

Figure 13-12 shows the results.

Figure 13-12

You already know that it is easy to access information from one array, rather than storing the information
in multiple variables. The following example puts all the properties into a hash table:

$SQLServerProperty=@{Poperties_of_SQLServer=""}
$SQLServerProperty =$SQLServerProperty+@{SQLServerName=$smovar.Name}
$SQLServerProperty =$SQLServerProperty+@{OSVersion=$smovar.OSVersion}
$SQLServerProperty =$SQLServerProperty+@{LoginMode=$smovar.LoginMode}
$SQLServerProperty =$SQLServerProperty+@{Product=$smovar.Product}
$SQLServerProperty =$SQLServerProperty+@{ProductLevel=$smovar.ProductLevel}
$SQLServerProperty =$SQLServerProperty+@{SqlCharSetName=$smovar.SqlCharSetName}
$SQLServerProperty =$SQLServerProperty+@{Collation=$smovar.Collation}
$SQLServerProperty =$SQLServerProperty+@{MasterDBPath=$smovar.MasterDBPath}
$SQLServerProperty=$SQLServerProperty+@{MasterDBLogPath=$smovar.MasterDBLogPath}
$SQLServerProperty =$SQLServerProperty+@{ErrorLogPath=$smovar.ErrorLogPath}
$SQLServerProperty

293

Chapter 13: Windows PowerShell and SMO

The results are shown in Figure 13-13.

Figure 13-13

You can get the entire server configuration information by calling the Configuration method and its
properties, as shown here. The equivalent T-SQL command would be sp_configure.

$smovar.Configuration.Properties | Select-Object DisplayName, Number, Minimum,
Maximum

The results would look like Figure 13-14.

Figure 13-14

294

Chapter 13: Windows PowerShell and SMO

SQL Server Database-Related Information
You can query all the database-related information available on the SQL Server instance via SMO. The
following cmdlet shows the database name, the date created, and collation:

$smovar.Databases | Select-Object Name, CreateDate, Collation

Figure 13-15 shows the results.

Figure 13-15

In order to get all the database properties on a particular database, in this case Admin, execute the follow-
ing cmdlet (see Figure 13-16):

$DBProp=$smovar.Databases | Where-Object {$_.Name -eq "Admin"}
$DBProp.Properties | Select-Object Name, Value | Format-Table -auto

Figure 13-16

295

Chapter 13: Windows PowerShell and SMO

Changing the Login Mode
SQL Server enables you to change the server login mode from Mixed to Windows authentication by
executing the following cmdlet:

$smovar.Loginmode
$smovar.set_LoginMode("Integrated")
$smovar.Loginmode

Figure 13-17 shows the results.

Figure 13-17

Host Information
You can also get some hardware and host-related information from SMO — for example, NetBIOS, plat-
form, number of processors, and size of physical memory — by executing the following cmdlets:

$smovar.Get_ComputerNamePhysicalNetBIOS()
$smovar.Get_ServerType()
$smovar.Get_Platform()
$smovar.Get_Processors()
$smovar.Get_Physicalmemory()

Figure 13-18 shows the results.

Figure 13-18

296

Chapter 13: Windows PowerShell and SMO

Performance Counters
You can enumerate all the performance counters available for a particular SQL Server instance by exe-
cuting the following cmdlet (see Figure 13-19):

$perfcount=$smovar.EnumPerformanceCounters()
$perfcount

Figure 13-19

You can also use a filtering cmdlet. This example displays all the performance counters that are related
to "Buffer" (see Figure 13-20):

$perfcount | where-object {$_.CounterName -like "*buffer*"}

Figure 13-20

Working with Databases using SMO
SMO can be used to create a database using the class Microsoft.SqlServer.Management.Smo.Database.

The next example creates a database called AdventureWorksTest using PowerShell and SMO. This
example uses the Create method of the smo.database object (see Figure 13-21):

[System.Reflection.Assembly]::LoadWithPartialName(’Microsoft.SqlServer.SMO’) |
Out-Null

297

Chapter 13: Windows PowerShell and SMO

$Server = New-Object (’Microsoft.SqlServer.Management.Smo.Server’)
‘PowerServer3\SQL2008’
$DataBase = New-Object (’Microsoft.SqlServer.Management.Smo.Database’)
($Server, "AdventureWorksTest")
$Database.Create()
$Server.databases | Select-Object name

Figure 13-21

In this case the database was created with all the default options. The next example shows how to create
a database with proper data file, log file, log location, data location, and file size.

Create another database called "MyDB2" using PowerShell and SMO (see Figure 13-22). This time you
need to specify the data filename and file location, data file size, log file name and log file location, and
log file size. Create a primary file group using the SMO.Filegroup class, and a data file and a log file using
the SMO.DataFile class. You can then set the file size, location, and growth size using various properties
of the DataFile class:

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.SMO") |
Out-Null
$Server = New-Object (’Microsoft.SqlServer.Management.Smo.Server’)
‘PowerServer3\SQL2008’
$DataBase = New-Object (’Microsoft.SqlServer.Management.Smo.Database’)
($Server, "MyDB2")
$FileGroup = New-Object (’Microsoft.SqlServer.Management.Smo.FileGroup’)
($DataBase, "PRIMARY")
$DataBase.FileGroups.Add($FileGroup)
$DataBaseDataFile = New-Object (’Microsoft.SqlServer.Management.Smo.DataFile’)
($FileGroup, "MyDB2_Data")
$FileGroup.Files.Add($DataBaseDataFile)
$DataBaseDataFile.FileName = "C:\MyDb2_Data.mdf"
$DataBaseDataFile.Size = [double](25.0 * 1024.0)

298

Chapter 13: Windows PowerShell and SMO

$DataBaseDataFile.GrowthType = "Percent"
$DataBaseDataFile.Growth = 25.0
$DataBaseDataFile.MaxSize = [double](100.0 * 1024.0)
$DataBaseLogFile = new-object (’Microsoft.SqlServer.Management.Smo.LogFile’)
($DataBase, "MyDb2_Log")
$DataBaseLogFile.FileName = "C:\MyDb2_Log.ldf"
$DataBase.Create()

Figure 13-22

The database files created in the C: drive are shown in Figure 13-23.

Figure 13-23

The next example creates a database with a primary group and a user-defined filegroup. This code creates
the database "MyDBTest"(see Figure 13-24). This time you need to specify the data file name, data file
location, data file size, log file name, log file location, and log file size on both the primary filegroup and
a user-defined filegroup "SalesFileGrp". You will create a data file on each filegroup, and a log file.

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.SMO")

$Server = New-Object (’Microsoft.SqlServer.Management.Smo.Server’)
‘PowerServer3\SQL2008’

$DataBase = New-Object (’Microsoft.SqlServer.Management.Smo.Database’)
($Server, "MyDBTest")

Create primary and user-defined filegroups.

299

Chapter 13: Windows PowerShell and SMO

$PrimaryFileGroup = New-Object (’Microsoft.SqlServer.Management.Smo.FileGroup’)
($DataBase, "PRIMARY")
$DataBase.FileGroups.Add($PrimaryFileGroup)
$SalesFileGroup = New-Object (’Microsoft.SqlServer.Management.Smo.FileGroup’)
($DataBase, "SalesFileGrp")
$DataBase.FileGroups.Add($SalesFileGroup)

Create the data files.
$DataBaseDataFile = New-Object (’Microsoft.SqlServer.Management.Smo.DataFile’)
($PrimaryFileGroup, "MyDBTest_Primary_Data")
$DataBaseDataFile2 = New-Object (’Microsoft.SqlServer.Management.Smo.DataFile’)
($SalesFileGroup, "MyDBTest_SalesFileGrp_Data")

Add the data files to their respective filegroups.
$PrimaryFileGroup.Files.Add($DataBaseDataFile)
$SalesFileGroup.Files.Add($DataBaseDataFile2)

Define the data file location, size and growth
$DataBaseDataFile.FileName = "E:\Data\MyDBTest_Data_primary.mdf"
$DataBaseDataFile2.FileName = "E:\Data\MyDBTest_Data_SalesFileGrp.ndf"

$DataBaseDataFile.Size = [double](25.0 * 1024.0)
$DataBaseDataFile.GrowthType = "Percent"
$DataBaseDataFile.Growth = 25.0
$DataBaseDataFile.MaxSize = [double](100.0 * 1024.0)
$DataBaseDataFile.IsPrimaryFile = ‘True’

$DataBaseDataFile2.Size = [double](25.0 * 1024.0)
$DataBaseDataFile2.GrowthType = "Percent"
$DataBaseDataFile2.Growth = 25.0
$DataBaseDataFile2.MaxSize = [double](100.0 * 1024.0)

Create the log file.
$DataBaseLogFile = new-object (’Microsoft.SqlServer.Management.Smo.LogFile’)
($DataBase, "MyDBTest_Log")
$DataBase.Logfiles.add($DataBaseLogFile)
$DataBaseLogFile.FileName = "E:\Data\MyDBTest_Log.ldf"

$DataBase.Create()

Figure 13-25 shows the database files created in the E: drive.

You can change the recovery model by using the set RecoveryModel method (see Figure 13-26). In this
example, you change the FULL recovery of the database "MyDBTest" to simple recovery:

$server = New-Object (’Microsoft.SqlServer.Management.Smo.Server’)
‘PowerServer3\SQL2008’
$database = New-Object (’Microsoft.SqlServer.Management.Smo.Database’)
($server, "MyDBTest")
$database.RecoveryModel
#Recovery model values 1 is FULL, 2 is BulkLogged, 3 is Simple
$rmodel=3
$database.Set_RecoveryModel($rmodel)
$database.RecoveryModel

300

Chapter 13: Windows PowerShell and SMO

Figure 13-24

Figure 13-25

You can execute a stored procedure or a query in the database using the following code (see Figure 13-27):

$server = New-Object (’Microsoft.SqlServer.Management.Smo.Server’)
‘PowerServer3\SQL2008’
$database = New-Object (’Microsoft.SqlServer.Management.Smo.Database’)
($server, "MyDBTest")
$result=$dataBase.ExecuteWithResults("sp_who")
$result.Tables | Format-Table -auto

301

Chapter 13: Windows PowerShell and SMO

Figure 13-26

Figure 13-27

In order to change the compatibility level of the database from SQL Server 2008 to SQL Server 2000, you
need to execute the following code (see Figure 13-28):

$server = New-Object (’Microsoft.SqlServer.Management.Smo.Server’)
‘PowerServer3\SQL2008’
$database = New-Object (’Microsoft.SqlServer.Management.Smo.Database’)
($server, "MyDBTest")
$dataBase.CompatibilityLevel
$dataBase.Set_CompatibilityLevel(80)
$dataBase.CompatibilityLevel

302

Chapter 13: Windows PowerShell and SMO

Figure 13-28

You could use the Microsoft.SqlServer.Management.Smo.Scripter class to script the database. The
next example shows you how. The database in this example is called "MyDBTEST" (see Figure 13-29).
Chapter 21 discusses scripting of the database, the schema, and database objects in detail.

[System.Reflection.Assembly]::LoadWithPartialName(’Microsoft.SqlServer.SMO’) |
Out-Null
$MyScripter=New-Object
("Microsoft.SqlServer.Management.Smo.Scripter")
$server = New-Object (’Microsoft.SqlServer.Management.Smo.Server’)
‘PowerServer3\SQL2008’
$MyScripter.Server=$server
$MyScripter.Script($server.databases["MyDBTEST"])

Figure 13-29

You can list database objects such as tables, views, and stored procedures using the Database property
of the class Microsoft.SqlServer.Management.Smo.Server, as shown here (see Figure 13-30 and
Figure 13-31):

303

Chapter 13: Windows PowerShell and SMO

$server = New-Object (’Microsoft.SqlServer.Management.Smo.Server’)
"PowerServer3\SQL2008"
$database = $server.Databases["msdb"]
$database.Views | Select-Object Name
$database.StoredProcedures | Select-Object Name

Figure 13-30

Figure 13-31

Working with Tables using SMO
So far, you have seen the various uses of SMO. SMO can also be used to create and manipulate database
objects such as tables, stored procedures, functions, and more. This section illustrates the use of SMO in
accessing and manipulating the database object tables.

304

Chapter 13: Windows PowerShell and SMO

Creating Tables
Creating tables in SMO is a pretty straightforward process. For the next example, create a table "MyTable"
in the database "MyDBTest" with two columns named ID and Name, as shown below. Here we use the
Microsoft.SqlServer.Management.SMO.Table and Microsoft.SqlServer.Management.SMO.Column
class to create the table. Using the SMO.column class, set the property Collation to a specific collation
value. We use the method columns.Add()in the Table object (see Figure 13-32).

[System.Reflection.Assembly]::LoadWithPartialName(’Microsoft.SqlServer.SMO’)
| Out-Null

$server = New-Object (’Microsoft.SqlServer.Management.Smo.Server’)
‘PowerServer3\SQL2008’

$database = $server.Databases["MyDBTest"]

$table = New-Object Microsoft.SqlServer.Management.Smo.Table($database, "MyTable")

$datatype1 = [Microsoft.SqlServer.Management.Smo.Datatype]::int
$datatype2 = [Microsoft.SqlServer.Management.Smo.Datatype]::Nchar(50)
$col1 = New-Object Microsoft.SqlServer.Management.Smo.Column($table,
"ID",$datatype1)
$col1.Collation = "Latin1_General_CI_AS"
$col1.Nullable = $false

$col2 = New-Object Microsoft.SqlServer.Management.Smo.Column($table,
"Name",$datatype2)
$col2.Collation = "Latin1_General_CI_AS"
$col2.Nullable = $false

$table.Columns.Add($col1)
$table.Columns.Add($col2)

$table.Create()

Listing Columns
You can use SMO to display all the columns available in a table. In the following example, we iterate
through all the tables in the database until we find the table "Mytable" using a foreach loop. Once
we find the table, we iterate through all the columns in the table and display the column name (see
Figure 13-33):

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") |
Out-Null
$server=New-Object "Microsoft.SqlServer.Management.Smo.Server"
‘PowerServer3\SQL2008’
$database = $server.Databases["MyDBTest"]
foreach ($table in $database.tables)
{

if($table.name -eq "MyTable")
{ Write-Host "Table Name="$table.Name;

foreach ($col in $table.columns) { Write-Host "ColumnName="$col.Name}
}

305

Chapter 13: Windows PowerShell and SMO

Figure 13-32

Figure 13-33

Removing Columns
You can use SMO to drop a column from a table. In the next example, shown in Figure 13-34, we iterate
through all the tables in the database until we find the table "Mytable" using a foreach loop. Once we
find the table, we iterate through all the columns until we find the column "ID". Once found, we drop
the column using the drop()method:

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") |
Out-Null
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" ‘PowerServer3\SQL2008’
$db = $srv.Databases["MyDBTest"]

306

Chapter 13: Windows PowerShell and SMO

foreach ($table in $db.Tables)
{

if ($table.name -eq "MyTable")
{

foreach ($col in $table.columns)
{

if($col.name -eq "ID")
{

$dropcolumn=$col
}

}
}

}

$dropcolumn.Drop();
$table.Alter();

Figure 13-34

Adding Columns
SMO can also be used for adding new columns to existing tables. Execute the cmdlets as shown in the
following example. Here, we use the class ‘Microsoft.SqlServer.Management.Smo.Column’ to add new
columns. We also use the properties Name, columns, Nullable and datatype and the Add()method to add
the column to the table "MyTable" (see Figure 13-35):

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") |
Out-Null

$srv = New-Object (’Microsoft.SqlServer.Management.Smo.Server’)
‘PowerServer3\SQL2008’

$db = $srv.Databases["MyDBTest"]
$table = $db.Tables["MyTable"]

307

Chapter 13: Windows PowerShell and SMO

$datatype0 =[Microsoft.SqlServer.Management.Smo.Datatype]::datetime
$datatype1 =[Microsoft.SqlServer.Management.Smo.Datatype]::int
$datatype2 =[Microsoft.SqlServer.Management.Smo.Datatype]::Money
$datatype3 =[Microsoft.SqlServer.Management.Smo.Datatype]::Nchar(50)

$col0 = New-Object ‘Microsoft.SqlServer.Management.Smo.Column’
$col0.Name="DOB"
$table.Columns.Add($col0)
$col0.Nullable = $false
$col0.Datatype=$datatype0

$col1 = New-Object ‘Microsoft.SqlServer.Management.Smo.Column’
$col1.Name="ID"
$table.Columns.Add($col1)
$col1.Nullable = $false
$col1.Datatype=$datatype1

$col2 = New-Object ‘Microsoft.SqlServer.Management.Smo.Column’
$col2.Name="Salary"
$table.Columns.Add($col2)
$col2.Nullable = $false
$col2.Datatype=$datatype2

$col3 = New-Object ‘Microsoft.SqlServer.Management.Smo.Column’
$col3.Name="Address"
$table.Columns.Add($col3)
$col3.Nullable = $false
$col3.Datatype=$datatype3

$table.alter()

Dropping a Table
SMO can also be used to drop existing tables. Execute the cmdlets as shown here (see Figure 13-36):

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") |
Out-Null
$srv = New-Object (’Microsoft.SqlServer.Management.Smo.Server’)
‘PowerServer3\SQL2008’
$db = $srv.Databases["MyDBTest"]

$table = $db.Tables["MyTable"]
$table.drop()

Backup and Restore with SMO
SMO can also be used to back up and restore a database.

Database Backup
As you already know, there are three different backups — namely, full backup, differential, and
transactional log backup. SMO can be used to take backups of all databases as well. Earlier in this

308

Chapter 13: Windows PowerShell and SMO

chapter, you saw an example of taking backups of databases using the SqlConnection class and a
stored procedure. This section illustrates how to take backups using SMO classes without using any
stored procedures. The next example takes a full backup of the database "MyDBTest", as shown in
Figure 13-37 and Figure 13-38. Here we use the SMO.Backup and SMO.BackupDeviceitem classes for
restoring a database. In SQL Server 2008, Microsoft moved all of the classes related to backup and restore
to SMOExtended.dll.

Figure 13-35

Figure 13-36

309

Chapter 13: Windows PowerShell and SMO

You can see that we load that assembly in the beginning:

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") |
Out-Null
[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.SmoExtended")
| Out-Null

[System.IO.Directory]::CreateDirectory("C:\Backup")
| Out-Null
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" "PowerServer3\SQL2008"
$bck=New-Object "Microsoft.SqlServer.Management.Smo.backup"
$bck.Action = ‘Database’
$fil=New-Object "Microsoft.SqlServer.Management.Smo.BackupDeviceItem"
$fil.DeviceType=’File’
$timestamp=((get-date).toString(’yyyy_MM_dd_hh_mm’))
$fil.Name=[System.IO.Path]::Combine("C:\Backup", "MyDBtest" +"_"+$timestamp+".bak")
$bck.Devices.Add($fil)
$bck.Database="MyDBTest"
$bck.SqlBackup($srv)

Figure 13-37

Figure 13-38

310

Chapter 13: Windows PowerShell and SMO

Transaction Log Backup
SMO can also be used to take transactional backups of a database. The next example takes a transaction
log backup of the database "MyDBTest", as shown here (see Figure 13-39 and Figure 13-40):

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") |
Out-Null
[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.SmoExtended")
| Out-Null
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" "PowerServer3\SQL2008"
$bck=New-Object "Microsoft.SqlServer.Management.Smo.Backup"
$bck.Action = ‘Log’
$fil=New-Object "Microsoft.SqlServer.Management.Smo.BackupDeviceItem"
$fil.DeviceType=’File’
$timestamp=((get-date).toString(’yyyy_MM_dd_hh_mm’))
$fil.Name=[System.IO.Path]::Combine("C:\Backup", "MyDBTest" +"_"+$timestamp+".log")
$bck.Devices.Add($fil)
$bck.Database="MyDBTest"
$bck.SqlBackup($srv)

Figure 13-39

Figure 13-40

311

Chapter 13: Windows PowerShell and SMO

Differential Backup
SMO can also be used to take Differential backups of a database. In order to take the Differential backup
of the database "MyDBTest", use the following code (see Figure 13-41 and Figure 13-42):

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") |
Out-Null

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.SmoExtended")
| Out-Null
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" "PowerServer3\SQL2008"
$bck=New-Object "Microsoft.SqlServer.Management.Smo.Backup"
$bck.Incremental = 1
$fil=New-Object "Microsoft.SqlServer.Management.Smo.BackupDeviceItem"
$fil.DeviceType=’File’
$timestamp=((get-date).toString(’yyyy_MM_dd_hh_mm’))
$fil.Name=[System.IO.Path]::Combine("C:\Backup", "MyDBTest"
+"_"+$timestamp+".diff")
$bck.Devices.Add($fil)
$bck.Database="MyDBTest"
$bck.SqlBackup($srv)

Figure 13-41

Figure 13-42

312

Chapter 13: Windows PowerShell and SMO

Restoring Full Backup
SMO can also be used to restore a full backup. In this example, the SQLRestore()method is used to
restore the backup file. We also use the class Microsoft.SqlServer.Management.Smo.relocatefile to
move the data files and log files to a different location. In addition, the ReplaceDatabase property is used
to restore the backup file to a new database, "MyDBTest2" (see Figure 13-43):

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") |
Out-Null
[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.SmoExtended")
| Out-Null
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" "PowerServer3\SQL2008"
$srv.ConnectionContext.SqlExecutionModes =
[Microsoft.SqlServer.Management.Common.SqlExecutionModes]::executesql
$res=New-Object "Microsoft.SqlServer.Management.Smo.restore"
$fil=New-Object "Microsoft.SqlServer.Management.Smo.BackupDeviceItem"
$relofil=New-Object "Microsoft.SqlServer.Management.Smo.relocatefile"
$relofil2=New-Object "Microsoft.SqlServer.Management.Smo.relocatefile"
$relofil3=New-Object "Microsoft.SqlServer.Management.Smo.relocatefile"
$relofil4=New-Object "Microsoft.SqlServer.Management.Smo.relocatefile"
$fil.DeviceType=’File’
$fil.Name="c:\backup\MyDBtest_2009_02_07_07_33.bak"
$res.Action = "Database"
$res.Database="MyDBTest2"
$res.Devices.add($fil)
$res.ReplaceDatabase=1
$relofil.LogicalFilename="MyDBTest_Primary_Data"
$relofil.PhysicalFilename="E:\Data\MyDBTest_Data_primary2.mdf"
$res.RelocateFiles.add($relofil)
$relofil2.LogicalFilename="MyDBTest_SalesFileGrp_Data"
$relofil2.PhysicalFilename="E:\Data\MyDBTest_Data_SalesFileGrp2.ndf"
$res.RelocateFiles.add($relofil2)
$relofil3.LogicalFilename="MyDBTest_Primary_Log"
$relofil3.PhysicalFilename="E:\Data\MyDBTest_Primary_Log2.ldf"
$res.RelocateFiles.add($relofil3)
$relofil4.LogicalFilename="MyDBTest_SalesFileGrp_Log"
$relofil4.PhysicalFilename="E:\Data\MyDBTest_SalesFileGrp_Log2.ldf"
$res.RelocateFiles.add($relofil4)
$res.SqlRestore($srv)
Write-Host "Restored the database backup."

Restoring a Full Backup and Transaction Log Backup
In this example, we use the SQLRestore()method to restore the backup file. We also use the class
Microsoft.SqlServer.Management.Smo.relocatefile to move the data files and log files to a different
location. The ReplaceDatabase property restores the backup file onto a new database, "MyDBTest2".

You can see that we repeat the same restore step we used in restoring a full backup to restore the trans-
action log backup. Because we are restoring multiple files, we use the property set_NoRecovery(1)to
keep the database in Norecovery mode. As shown in Figure 13-44, the following code restores both Full
backup and transactionlog backup:

313

Chapter 13: Windows PowerShell and SMO

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") |
Out-Null
[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.SmoExtended")
| Out-Null
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" "PowerServer3\SQL2008"
$srv.ConnectionContext.SqlExecutionModes =
[Microsoft.SqlServer.Management.Common.SqlExecutionModes]::executesql
$res=New-Object "Microsoft.SqlServer.Management.Smo.restore"
$fil=New-Object "Microsoft.SqlServer.Management.Smo.BackupDeviceItem"
$relofil=New-Object "Microsoft.SqlServer.Management.Smo.relocatefile"
$relofil2=New-Object "Microsoft.SqlServer.Management.Smo.relocatefile"
$relofil3=New-Object "Microsoft.SqlServer.Management.Smo.relocatefile"
$relofil4=New-Object "Microsoft.SqlServer.Management.Smo.relocatefile"

$fil.DeviceType=’File’
$fil.Name="c:\backup\MyDBtest_2009_02_07_07_33.bak "
$res.Action = "Database"
$res.Database="MyDBTest2"
$res.Devices.add($fil)
$res.ReplaceDatabase=1

$relofil.LogicalFilename="MyDBTest_Primary_Data"
$relofil.PhysicalFilename="E:\Data\MyDBTest_Data_primary2.mdf"
$res.RelocateFiles.add($relofil)

$relofil2.LogicalFilename="MyDBTest_SalesFileGrp_Data"
$relofil2.PhysicalFilename=" E:\Data\MyDBTest_Data_SalesFileGrp2.ndf"
$res.RelocateFiles.add($relofil2)

$relofil3.LogicalFilename="MyDBTest_Primary_Log"
$relofil3.PhysicalFilename=" E:\Data\MyDBTest_Primary_Log2.ldf"
$res.RelocateFiles.add($relofil3)

$relofil4.LogicalFilename="MyDBTest_SalesFileGrp_Log"
$relofil4.PhysicalFilename="E:\Data\MyDBTest_SalesFileGrp_Log2.ldf"
$res.RelocateFiles.add($relofil4)

$res.set_NoRecovery(1)

$res.SqlRestore($srv)
Write-Host "Restored the database backup."

$res=New-Object "Microsoft.SqlServer.Management.Smo.restore"
$fil=New-Object "Microsoft.SqlServer.Management.Smo.BackupDeviceItem"
$relofil=New-Object "Microsoft.SqlServer.Management.Smo.relocatefile"
$relofil2=New-Object "Microsoft.SqlServer.Management.Smo.relocatefile"
$relofil3=New-Object "Microsoft.SqlServer.Management.Smo.relocatefile"
$relofil4=New-Object "Microsoft.SqlServer.Management.Smo.relocatefile"

$fil.DeviceType=’File’
$fil.Name="c:\backup\MyDBTest_2009_02_07_07_34.log"
$res.Action = "Log"
$res.Database="MyDBTest2"
$res.Devices.add($fil)
$res.ReplaceDatabase=1

314

Chapter 13: Windows PowerShell and SMO

$relofil.LogicalFilename="MyDBTest_Primary_Data"
$relofil.PhysicalFilename=" E:\Data\MyDBTest_Data_primary2.mdf"
$res.RelocateFiles.add($relofil)

$relofil2.LogicalFilename="MyDBTest_SalesFileGrp_Data"
$relofil2.PhysicalFilename=" E:\Data\MyDBTest_Data_SalesFileGrp2.ndf"
$res.RelocateFiles.add($relofil2)

$relofil3.LogicalFilename="MyDBTest_Primary_Log"
$relofil3.PhysicalFilename=" E:\Data\MyDBTest_Primary_Log2.ldf"
$res.RelocateFiles.add($relofil3)

$relofil4.LogicalFilename="MyDBTest_SalesFileGrp_Log"
$relofil4.PhysicalFilename=" E:\Data\MyDBTest_SalesFileGrp_Log2.ldf"
$res.RelocateFiles.add($relofil4)

$res.set_NoRecovery(0)

$res.SqlRestore($srv)
Write-Host "Restored the transaction log backup."

Figure 13-43

315

Chapter 13: Windows PowerShell and SMO

Figure 13-44

Summary
This chapter illustrated connection methods using the SqlConnection class and SQL Server Manage-
ment Objects (SMO). It also illustrated the various administrative functions such as creating a database,
creating objects, getting server information and database information, object creation, and backup and
restore using Windows PowerShell and SQL Server Management Objects. Although you can always
use plain T-SQL for doing all the tasks mentioned in this chapter, when it comes to automation, SMO
and the SQLConnection class always come in handy. The next chapter discusses various SQL Server and
PowerShell standards used in the industry.

316

Building SQL Ser ver
Standards and PowerShell

Coding Standards

Defining and documenting SQL Server’s standards is very important for any organization.
Standards are important because they improve database manageability, platform scalability,
Transact-SQL readability, and database performance, in addition to making troubleshooting
easier. This chapter deals with SQL Server standards in a shop. SQL Server is not just a RDBMS; it
contains many features. Based on the environment and resource availability, the features that are
supported in an organization should be defined. Although it is easy and useful to adopt Microsoft’s
recommended standards and best practices, depending on your environment and the features that
your department is going to support, you also need to define your own standards.

The standards illustrated in this chapter are a compilation of different scenarios drawn from our
personal experiences in various companies. If you are already following SQL Server standards
in your company, you may not need to review this chapter. However, we recommend you to go
through the Windows PowerShell standards and at least glance through this entire chapter. It will
definitely give you more insight and help you improve your current standards.

This chapter covers the following topics:

❑ SQL Server standards

❑ SQL Server development standards

❑ SQL Server database design standards and best practices

❑ Data protection standards

❑ SQL Server production standards

❑ Windows PowerShell coding standards

Chapter 14: Building SQL Server and Powershell Coding Standards

SQL Server Standards
The scope of the SQL Server standards defined in this chapter cover SQL Server 2000, 2005, and 2008
databases and related systems. Although not all of the standards discussed in this chapter may apply to
your organization completely, you can still use this chapter as a general guideline. Once your standards
are defined, you can enforce them by regular auditing, or policies, as you will see in Chapter 20.

SQL Server Development Standards
SQL Server development standards establish the programming standards for SQL Server development.
Various components are involved when developing or programming in the SQL Server environment.
These development standards help to improve T-SQL readability, troubleshooting, and performance.

Naming Conventions
A clear and consistent naming convention related to naming any element of the database is a vital part
of any development standards. Just by reading the name of a database or an object, you should be able to
tell its character and function.

Databases
Databases should be named to identify the application. Database names should not include versions or
environment information or any other variables that may change over time and become meaningless.
For example, do not name a database VisualReporting_PROD, VisualReporting_test. The naming
convention should reflect the application name — for example, RiskReporting.

Tables
Tables should be named to identify the entities they represent, and be placed in the appropriate schema.
Don’t include spaces within object names, as square brackets or quotation marks will be needed when
referring to the object. Similar to databases, you should use a descriptive application name such as
HumanResources.Employee,Production.Product.

Views
View names should be descriptive and prefixed with a ‘‘v.’’ A view cannot be named identically to a
table, as they reside in the same namespace. A view should be placed in the appropriate schema.

Views do not always represent a single entity. A view can be a combination of two or more tables based
on a join condition. When possible, combine the names of the base tables. For example, if you have a view
combining two tables Employee and Department in the HumanResources schema, name the
view vEmployeeDepartment and placed it in the HumanResources schema.

Views can summarize data from existing base tables in the form of reports. For example, you might use
vProductsSales or vOrderSummary.

Stored Procedures
Stored procedure names should describe the work they do and be prefixed with usp. Use a verb abbre-
viation to describe the action name or tasks. Action names could be Insert, Delete, Update, Select,
Upsert, or Get.

318

Chapter 14: Building SQL Server and Powershell Coding Standards

Never prefix your stored procedures with sp_ unless you are storing the procedure in the master
database. If you call a stored procedure prefixed with sp_, SQL Server always looks for this procedure in
the master database. Only after checking in the master database (if not found) does it search the current
database.

For example, you could name a stored procedure uspInsertCustomer, uspUpsertEmployeeDetails.

In Chapter 20, you will see an exemplary policy ‘‘Stored Procedure Naming Convention’’ that enforces
the stored procedure naming convention.

User-Define Functions
In Microsoft SQL Server, user-defined functions (UDFs) are similar to stored procedures, except that
UDFs can be used in SELECT statements. Therefore, the naming conventions discussed in the preceding
section for stored procedures apply to UDFs as well. UDFs should be prefixed with ufn. The only actions
that apply here are Select and Get. For example, a user-defined function can be named something like
ufnGetCustomerAddress.

Triggers
Use the dml or ddl prefix to specify the trigger type.

For DML triggers, use actions to specify the type of T-SQL events that cause the DML trigger to fire.
Incorporate the table or view name in the trigger name to indicate the table or view on which the DML
trigger is executed. Combine the actions as necessary to reflect the activity against the table.

For DDL triggers, append the server or database event that causes the trigger to fire. Microsoft SQL
Server allows more than one trigger per action per table, but this is not recommended because it becomes
too hard to manage and is very difficult to debug.

Examples of acceptable trigger names might be dmlInsertEmployeeDetails and ddlCreateTable.

Indexes
Indexes are dependent on the underlying base tables or views, so it makes sense to include the name of
the table and the column(s) on which it is built in the index name. The prefix of IX_ is used for nonpri-
mary indexes. If the index is a unique index, then prefix it with UIX_. For a clustered index, use the prefix
CIX_; and for a unique clustered index, use the prefix UCIX_.

For example, an index name might be defined as IX_Address_AddressLine1_AddressLine2_City
_StateProvinceID_PostalCode.

Columns
Columns are attributes of an entity — that is, columns describe the properties of an entity. Therefore,
column names should be meaningful and natural. For example, useful column names could be defined
as ProductID, ProductName, FirstName, and LastName.

User-Define Data Types
Using CamelCase (also known as Hungarian Notation) and the prefix udt, name user-defined data types
to describe the attribute of the column. User-defined data types are used to maintain consistency of

319

Chapter 14: Building SQL Server and Powershell Coding Standards

data types across different tables for the same attribute. For example, a user-defined data types could be
defined as udtCustomerID.

Primary Keys
A primary key should be prefixed by PK_ and followed by the table name and the primary column names,
such as PK_Customer_CustomerID.

ForeignKeys
Foreign keys should be prefixed by FK_ and followed with the table name and the parent table name
(referenced table name), and the referenced column name.

For performance reasons, an index must be created on the columns(s) that match the foreign
key. Follow the index-naming standards during the creation of this index. An example might be
FK Product ProductSubcategory ProductSubcategoryID.

Default andCheck Constraints
Use the DF_ and CK_ prefixes, respectively, for Default and Check constraints, followed by the
table name and the column name on which the constraint is enforced (e.g., DF_Order_OrderDate,
CK_Product_ProductNumber).

Variables
A variable name should describe what it represents. For variables that store the contents of columns, you
should use the same naming convention that you use for column names (e.g., @LastName, @databaseID).

Roles
A role name should be made up of the application name it is used for and the function it performs. Stan-
dard role names would include the following: dev, online, batch, report. Use PascalCase. For example,
assume ‘‘Pluto’’ is the application name. ‘‘Dev’’ stands for developers, so the role for the developers that
work on the Pluto application is PlutoDev.

General Rules
When creating a naming convention, keep the following general rules in mind:

❑ Keep it as simple as possible.

❑ Use mixed case names to be clear. When you use mixed case names, be consistent with case
throughout the code on case-sensitive SQL Servers.

❑ Do not use spaces within the name of database objects, as spaces confuse front-end data access
tools and applications. Use underscores instead.

❑ Be sure not to use any reserved words when naming your database objects, as that can lead to
some unpredictable results. To get a list of reserved words for Microsoft SQL Server, search
Books Online for ‘‘Reserved keywords.’’

320

Chapter 14: Building SQL Server and Powershell Coding Standards

Stored Procedure Standards
When developers are ready to create their stored procedures, the DBA should take the time to review
their code and ensure that it follows documented standards, including proper formatting, good usage,
and good design. If problems are identified, the DBA must notify the developers, explaining the need for
the change. This provides an opportunity to review and optimize the code before it causes a production
problem. The following sections offer some guidelines on creating stored procedures.

Keep Them Small
Keep stored procedures as small as possible. If necessary, create several small procedures that are called
from one ‘‘driver’’ procedure.

When calling a stored procedure from your application, it is important that you call it using its fully
qualified name, such as exec database_name.dbo.myProcedure instead of exec myProcedure.

Using fully qualified names helps to eliminate any potential confusion about which stored procedure
you want to run, which prevents bugs and other potential problems. More important, doing so enables
SQL Server to access the stored procedure’s execution plan more directly, which in turn speeds up the
performance of the stored procedure.

‘‘DBO’’ As Object Owner
In SQL Server 2000, the schema was synonymous with the owner. Unless unavoidable, all objects within
a database should be owned by dbo; if they are not, SQL Server must perform name resolution on the
objects if the object names are the same but the owners are different. When this happens, SQL Server
cannot use a stored procedure using the existing execution plan. Instead, it has to recompile and execute
the procedure.

Beginning with SQL Server 2005, the behavior of schemas changed. Schemas are no longer equivalent to
database users. Each user has a default schema, which can be set and changed. Therefore, defining all
objects in the dbo schema is not always appropriate. Because any given database user might belong to a
different default schema, it’s a good idea to always refer to tables, views, stored procedures, and so on
by schema name.

Use Comments Generously
Using comments helps others understand the code clearly, and it won’t affect performance. Changes to
database objects made by the developer should be logged with comments. The following listing shows
an example:

--
--Object Name: uspGetPatientRate
--Author: MAK & Yan
--Created Dt:
--Function: Provide information for Rate info Screen
--**
-- Modification Log
--***

321

Chapter 14: Building SQL Server and Powershell Coding Standards

--Modified by: Modified Date: Modification:
--MAK Dec-27-2008 4. Add DefaultCharge indicator in charge information
-- 3. Update obsolete information in charge

information, default to 100
--Yan Nov-20-2008 2. Add PatientStatusFlag indicator in rate

information to
-- differentiate physical and virtual rate info
--MAK Mar-03-2007 1. Change virtual_flag to VirtualFlag
--**

Using comments to provide a history of changes over time can help any developers who work with your
code later to understand what was changed and why.

Select *
Do not use SELECT * in your queries. Always write the required column names after the SELECT, INSERT,
and UPDATE statements, such as SELECT CustomerID, CustomerName, and City. This technique results in
less disk I/O and hence better performance.

Cursors
Avoid cursors as much as possible. Cursors can be avoided by using SELECT statements in many cases.
Try to use a WHILE loop instead. Testing has shown that a WHILE loop is always faster than a cursor. For
a WHILE loop to replace a cursor, you need a column (primary key or unique key) to identify each row
uniquely. Generally, cursors use a lot of resources and reduce performance. If you have to use a cursor,
then make sure you close it and DEALLOCATE it when you are finished with it. Deallocation is required to
free up the SQL Server resources used by the cursor.

Each time you fetch a row from a cursor, it results in a network round-trip, whereas a normal SELECT
query makes only one round-trip regardless of the size of the resultset. Cursors require more resources
and temporary storage (more I/O operations). Alternatives include using SET-based operations or WHILE
loops.

Temporary Tables
Avoid the use of temporary tables while processing data. Creating a temporary table means more disk
I/O. Moreover, when SQL Server is shut down, any data in tempdb is deleted permanently. For this
reason, don’t store any application-specific data in the tempdb database. Leave it exclusively for use by
SQL Server. Tempdb should only be thought of as transitional storage space. Because tempdb has a limited
size, care must be taken that when you do use it, it doesn’t become filled with records in tables from rogue
procedures that indefinitely create tables with too many records. If this were to happen, not only would
your process stop working, but the entire server could stop functioning, affecting everyone on that server.

Things to Avoid
Avoid wildcard characters at the beginning of a word when using the LIKE keyword. This results in an
index scan, which defeats the purpose of an index.

Avoid searching with not equal operators (<> and NOT). This results in an index scan, which could
potentially cause performance problems.

322

Chapter 14: Building SQL Server and Powershell Coding Standards

Prefix table names with owner names. This improves readability and avoids confusion. BOL even states
that qualifying table names with owner names helps in reuse of execution plans.

Things to Use
Use SET NOCOUNT ON. This improves the performance of stored procedures by reducing network traffic
by suppressing messages like ‘‘(1 row(s) affected).’’ Use this at the beginning of SQL batches, stored
procedures, and triggers in production environments.

Use foreign key and check constraints. Perform all your referential integrity checks and data validations
using constraints (either foreign key or check constraints). These constraints are faster than triggers. Use
triggers only for auditing, custom tasks and validations that cannot be performed using these constraints.

Front-end applications should be deadlock-intelligent. They should be able to resubmit the transaction in
case the previous transaction fails with error 1205, but not infinitely or the application could loop.

Check @@ERROR
Always check the global variable @@ERROR immediately after executing a data manipulation statement
such as INSERT, UPDATE, or DELETE. Alternately, try to use TRY . . . CATCH wherever possible. This way, you
can roll back the transaction in case of an error (@@ERROR will be greater than 0 in the case of an error).
By default, SQL Server will not roll back all the previous changes within a transaction if a particular
statement fails. If you SET XACT_ABORT ON at execute or run time, this behavior is changed. If you are on
SQL Server 2005 or later, try to use TRY . . . CATCH.

❑ TRY block: The TRY block contains the instructions that might cause an exception.

❑ CATCH block: If an exception occurs from one of the statements in the TRY block, then control is
branched to the CATCH block, where the exception can be handled, logged, and so on.

Use SQL Server Date Data Types
Always use SQL Server date and datetime data types for storing dates. This ensures that years are stored
in a four-digit format.

DML Statements
Do not use DML statements within applications. Front-end apps should not query/manipulate data
directly using DML statements. Create stored procedures, and the apps should access these stored pro-
cedures. This helps execute plan caching and keeps the data access clean and consistent across all the
modules of your application. It also avoids SQL injection.

ANSI-Standard Join Clauses
The more readable ANSI-standard join clauses should be used instead of the old-style joins. With the
ANSI joins, the WHERE clause is used only for filtering data. In the older-style joins, the WHERE clause
handles both the join condition and filtering data. The preferred ANSI-standard join is as follows:

323

Chapter 14: Building SQL Server and Powershell Coding Standards

select Orders.OrderID,
Employees.LastName,
Customers.CompanyName,
Orders.ShipCity
from Orders inner join Employees
on Orders.employeeID = Employees.EmployeeID
inner join Customers
on Orders.customerID = Customers.CustomerID
where Orders.ShipCity > ‘T’;

This is the old-style join:

select Orders.OrderID,
Employees.LastName,
Customers.CompanyName,
Orders.ShipCity
from Orders, Employees, Customers
where Orders.ShipCity > ‘T’
and Orders.EmployeeID = Employees.EmployeeID
and Orders.CustomerID = Customers.CustomerID;

Deprecated Features
Try to avoid any features or objects that will be deprecated in the future. When a new SQL Server version
is released, make sure you do not continue using any deprecated features.

Database Design Standards and
Best Practices

In a table that conforms to the third normal form, no column can depend on a non-key column. How-
ever, denormalize your database as needed for specific performance reasons. For reporting purposes,
a denormalized database design is more preferable than a normalized database design. In the OLAP
environment, denormalization works better.

User-Define Tables
System databases should not contain user-defined tables. There are exceptional cases for which you
have to create a stored procedure and table in master databases — for example, using a startup
procedure.

Logs
If you have physically separate disk systems, place the logs on a separate disk system from the data. This
is for two reasons: performance and protection. On a dedicated disk, access to the transaction log is faster
because it doesn’t have to contend with database reads/writes. Placing the transaction log contents on
a dedicated disk also enhances the data protection plan. Always try to use a SAN drive for the data and
the log if possible.

324

Chapter 14: Building SQL Server and Powershell Coding Standards

Split tempdb
Increase the number of tempdb data files to be at least equal to the number of processors assigned for SQL
Server, in order to reduce tempdb contention. In addition, create files of equal size.

Databases
Separate production databases and development (test) databases. Production and nonproduction
databases should not reside on the same physical server. This not only separates the two functions,
production and test, but also prevents anyone from consuming server resources that are needed for
production.

Security and Roles
Include security needs during design. Consider encrypting sensitive pieces of data such as credit card
numbers and social security numbers.

Use the fixed server roles and create custom database roles if needed. Avoid assigning individual users
special permissions. Create custom database roles that suit your particular situation, and assign users to
the appropriate roles.

Auto Create and Auto Update
At the database level, keep Auto Create Statistics on and Auto Update Statistics on. The SQL Server
Query Optimizer has the ability to use statistics on columns that are not indexed in order to create more
optimal execution plans. Sometimes it is more efficient to use column statistics instead of an index to
optimize query performance. If you notice performance problems with updating a specific index with
the STATISTICS NORECOMPUTE option, then turn off Auto Update at the index level, not at the database
level.

Size
Properly size the database and log files. Pre-size the data file, transaction log file, and the tempdb database
to avoid or minimize file expansions during operations. Properly size the mdf and ldf default setting in
the model database, as every time SQL Server is restarted, the old tempdb database is deleted and a new
one is created based on the configuration setting in the model database. Certain options, such as database
growth, should be automatic. Again, in exceptional cases you do not want to turn on auto growth. It is
not applicable for Very Large Databases (VLDB).

Auto Shrink and Auto Close
Keep the Auto_Shrink and Auto_Close options off. These are two options you will never want to enable
on a production database.

When Auto_Close is set to on, the database is shut down automatically when no one connects to it, and
its resources are freed. When a user tries to use the database again, the database regains resources
and reopens. Frequent closing and reopening of the database causes delays for users. The overhead
of closing and reopening the database can be significant, even affecting performance.

325

Chapter 14: Building SQL Server and Powershell Coding Standards

When Auto_Shrink is set to on, SQL Server will automatically shrink a database file when more than 25
percent of the space in the database file is unused. Database shrinking hogs CPU. If the size of the file is
big, shrinking could take minutes or even hours. Users will notice a sudden performance hit while the
shrinking is in progress.

In Chapter 20, we will show you an exemplary policy, Database Auto Options Disabled, to enforce this
standard.

Design and Performance
While designing your database, design it keeping performance in mind. You cannot really tune perfor-
mance when your database is in production, as it involves rebuilding tables/indexes, rewriting queries,
and so on. The time to tune is during design and development. Use the graphical execution plan in Query
Analyzer or the SHOWPLAN TEXT or SHOWPLAN ALL commands to analyze queries.

Ensure that queries do ‘‘index seek’’ instead of ‘‘index scan’’ or ‘‘table scan.’’ Avoid ‘‘hash join’’ and
‘‘bookmark lookup,’’ as they are expensive operations. The hash join will be used if there are no adequate
indexes on the joined columns. Building the hash tables can be very expensive. Bookmark lookups are a
mechanism to navigate from a non-clustered index row to the actual data row in the base table (clustered
index) in order to fetch all the required columns. Make sure appropriate indexes are created to run
queries efficiently.

Store Unstructured Data
In SQL Server 2000, files and images should not be stored as BLOBs in database tables. Storing unstruc-
tured data, such as PDFs, Word documents, Project Plan MPPs, Power Point PPTs, and image files, as
TEXT or IMAGE data types in a SQL Server table risks performance problems and should be avoided. An
alternative is to use the table to store the locations or links to the physical files, return this information
to the application, and then have the application retrieve the file. Storing XML documents as BLOBs (i.e.,
TEXT or NTEXT) may be acceptable, but requires review and approval by the data architect. It may be
acceptable to store an XML document if the purpose is to use the XML capabilities of SQL Server.

Starting from SQL Server 2005, use the varbinary(max)data type to store unstructured data. In SQL
Server 2008, if the average of the BLOB data is more than 1MB, enable the FILESTREAM option and stream
access the data with Win32 APIs.

More Performance Guidelines
The following guidelines are important to adhere to as well:

❑ SQL Server should be installed on its own database server to avoid contention with applications.

❑ Run DBCC commands during off-peak hours.

❑ Keep transactions as short as possible.

❑ Touch as little data as possible during a transaction.

❑ Never wait for user input in the middle of a transaction. This eliminates the possibility of ‘‘enlist-
ing’’ in an ADO or COM+ transaction.

326

Chapter 14: Building SQL Server and Powershell Coding Standards

❑ Never run a transaction in SQL server directly. Run everything from application unless you are
a DBA. Use transactions only for administrative work in SQL Server directly.

❑ Access tables in the same order in stored procedures, triggers, and development code consis-
tently to avoid deadlocks.

Data Protection Standards and
Best Practices

The following guidelines outline best practices for data protection standards:

❑ Create a separate maintenance plan for backing up the system databases. Do not mix user
database backups with system database backups.

❑ It is not necessary to backup the tempdb because it is rebuilt each time SQL Server starts.

❑ Keep a script of the functional database schema in a secure location on the network. This comes
in handy if you need to know the structure of the database in production or you need to recover
a database that does not have any backup left (although you should not allow yourself to be in
such a situation).

❑ Use Windows Authentication, rather than SQL Server Authentication.

❑ Windows Authentication provides additional security and is recommended.

❑ Because of the security risk, do not use the SQL Server extended stored procedure
xp_cmdshell.

Backup Policy
Typically, a full database backup should be scheduled for every database at 11:00 pm, and transactional
log backup should be scheduled for every 15 minutes. For companies that are not active on weekends, for
a VLDB, full backup should be scheduled every Saturday at 11:00 pm, and a differential backup should be
scheduled for every night at 11:00 pm except on Saturday and Sunday. Transactional log backup should
be scheduled for every 15 minutes.

Tape backup of all the local backups should also be scheduled. Though this is not a DBA’s job, you should
keep track of the tape backups and ensure that database backups are going to the tapes.

SQL Server Production Standards
Follow your company’s change management process. Do not implement a code onto the production
server just because you have permission. Remember Murphy’s law: ‘‘If anything can go wrong, it
will.’’

High Availability and Disaster Recovery
In the production environment, wherever possible, try to have a cluster server. If that’s not possible, at
least attach the SAN drive for data files like .mdf and .ndf, and log files like .ldf.

327

Chapter 14: Building SQL Server and Powershell Coding Standards

If you do not have a SAN replication infrastructure, try to have a DR environment with log shipping or
database mirroring, or third-party replication, etc.

The Administration Database
Every SQL Server instance should have an admin database. The admin database holds objects, procedures,
and functions related to SQL Server administration. For example, this could be a stored procedure to get
the databases that have not been backed up for 24 hours, a stored procedure to audit scheduled jobs, a
table to consolidate backup or job history, or a table to hold server performance data. You will see the
use of the admin database in Chapters 17 and 19.

The Scratch Database
Every SQL server instance should also have a scratch database, which is predominantly used for tem-
porary administrative purposes, such as storing a table before implementing a major change on a table;
copying the existing copy of a stored procedure before implementing changes to a production database;
or restoring a database from a historical tape backup to compare data with a current production database,
and so on.

Centralized Inventory Server
At least one centralized inventory server for SQL Server inventory tracking is necessary to store the informa-
tion about all the SQL Server hosts and servers in your environment. Information regarding administra-
tion and monitoring from all the SQL Servers is also stored in this database. The inventory server should
be reside on a cluster and be replicated across regions to ensure the highest availability. Chapter 15 dis-
cusses how to build an inventory database over an existing or new environment. Following Chapter 15,
we will design monitoring solutions based on the inventory.

Database File Location and RAID
Depending on your budget, your drives should have a RAID configuration such as RAID 1 + 0 or RAID
1 for the data file drive, RAID 1 + 0 or RAID 5 for the log file drive, and RAID 1 + 0 or RAID 5 for the
tempdb drive.

When creating a database, make sure data files such as .mdf, .ndf, the log file .ldf, and tempdb are
created on separate drives.

Segregation
Try to keep different features of SQL Server on different host machines. Do not put both the OLTP envi-
ronment (Database Engine) and the OLAP environment (SSAS) on the same host. Similarly, do not put
both the OLTP environment and the DSS environment (SSRS) on the same host.

Features
Do not install features that are not going to be used on the production boxes. For example, if you are not
going to use Integration Services on a particular production box, do not install it.

328

Chapter 14: Building SQL Server and Powershell Coding Standards

PowerShell Coding Standard
Windows PowerShell is extremely versatile. When you have something more flexible, it calls for stan-
dard. You don’t want DBAs or system engineers writing duplicate code and using different styles of
writing, which leads to a lack of uniformity and more confusion, resulting in wasted resources. Use the
following guidelines to create standards:

❑ Version: Decide which Windows PowerShell version your company is going to support. Avoid
using CTP versions in production.

❑ Install: Include Windows PowerShell either as a part of your Windows build or include it as a
post-Windows install task.

❑ PowerShell title: Try to stick with one title in the PowerShell window. Use something standard
such as the following:

$host.ui.RawUI.WindowTitle = "Windows PowerShell"

❑ PowerShell prompt: Decide on a prompt for Windows PowerShell in your environment —
something that is distinguishable, such as PowerPC PS C:\>.

❑ Script naming convention: Use the same verb-noun format used by the Windows PowerShell
cmdlets, such as Backup-DataBase.ps1 or Ping-Host.ps1.

Default Parameters
Make sure every script has the minimum following three parameters:

❑ -Debug: Runs the script in debug mode

❑ -Help: Shows the help file

❑ -Mail: E-mails the results of the script to the appropriate contacts, such as the DBA group or the
business units

Log File
Any log files created by the PowerShell script should have a naming convention, such as
HostName_ServerName_ScriptName_yyyymmdd_hhmmss.log.

Log Format
Inside the log file, the format of the log should be as follows:

YYYY-MM-DD HH:MM:SS Error/Information/Warning Message

The log file should be written only in Unicode. Do not write a log file in ASCII format. Keep in mind that
you may have servers worldwide.

329

Chapter 14: Building SQL Server and Powershell Coding Standards

Comments
Be generous when writing comments. Make sure you have a standard comment heading, such as the
following:

===
#
NAME: MonitorDeadlocks.ps1
#
AUTHOR: Yan and MAK
DATE : 5/1/2008
#
COMMENT: This script collects the information about threads and resources involved

in deadlocks.
===

Display
When you display a message, make sure you follow a proper format. The following is an example:

YYYY-MM-DD HH:MM:SS error/Information/Warning Message

Variable Naming Convention
Variable names should be plain English and something related to your program’s functionality. Do not,
for example, name a variable $a, $marilynmonroe. Use proper casing for variable names, and declare
explicitly the data type for each variable — for example,[string] $MyHost. If necessary, suffix variables
with comments, as shown in the following example:

[string] $Squotes = "’" # -- Set variable for embedded Single Quote.
[string] $Dquotes = ‘"’ # -- Set variable for embedded Double Quote.

Try to define and use more functions rather than call a script from another script if the code is reusable.

Exception Handling
Try to set the following variable globally on the top of the script and handle all the exceptions within the
script after major cmdlets:

$erroractionpreference="SilentlyContinue"

There are three ways you could handle exceptions. Based on the requirements, you could use one of the
following methods:

Method 1:

Using Errvariable named parameter and ErrorAction named parameter. Example

$AFSwmi=get-wmiobject -class Win32_service -computername $hostname -Errorvariable
ERR -ErrorAction Silentlycontinue

330

Chapter 14: Building SQL Server and Powershell Coding Standards

if ($ERR)
{
Write-Msg -errnumber 2 -message "Can’t connect to the remote computer $hostname"
Write-Msg -errnumber 2 -message $ERROR[0]
}
else
.....

Method 2:

Using Test-Path cmdlet before executing external commands , executables and batch
files etc.

Example

$Result=Test-Path -Path "C:\mybatch.bat"
if($Result)
{
$asl= C:\mybatch.bat param1 param2
$asl
}
else
{
Write-Msg -ErrNumber 2 -Message "MyBatch.bat not found in C:\"
}

Method 3:

Using Trap command.

trap [Exception] {
write-Msg -ErrNumber 2 -Message $_.Exception.GetType().FullName;
write-Msg -ErrNumber 2 -Message $_.Exception.Message;
$ERR=1
continue;
}
$domain = "MyDomain"
$computer = [ADSI]("WinNT://" + $Hostname + ",computer")
if (-not $ERR)
{ ..

Summary
As mentioned at the beginning of this chapter, defining standards and specifying the standards in a
document is very important for any organization. It helps avoid rework and structures the efforts of
both the developer and the database administrator. Feel free to use this chapter as the baseline for your
standards and to improve upon it.

This chapter illustrated various SQL Server standards for various aspects of SQL Server and Power-
Shell: development; database design, including best practices; data protection; production; and Windows
PowerShell coding.

331

Building SQL Ser ver
Inventor y

In a complex enterprise environment, it can be a daunting task to track and manage hundreds or
even thousands of SQL Server hosts and instances. Business units inside the company constantly
ask for new instances to be built for new projects, or for migration of existing projects. SQL Server
instances reside on different hosts with different operating systems and hardware. It is critical to
have an inventory that includes every instance in the environment, and use it to keep up with
changes on every instance. This inventory can also be used for auditing, capacity planning, and
budget planning.

This chapter presents an inventory tracking solution tailored for SQL Server. The topics discussed
include the following:

❑ SQL Server inventory

❑ Hosts

❑ Clusters

❑ ClusterNodes table

❑ Servers

❑ Databases

❑ Supplementary tables

SQL Server Inventor y
The inventory is stored in a centralized SQL Server database. The database should be set up prefer-
ably on a failover cluster instance with at least two nodes. If the company has servers in different

Chapter 15: Building SQL Server Inventory

regions — say, North America (NA), Europe (EU), and Asia (AS), then each region should have a
replicated copy of the centralized database to reduce network bandwidth for reads across continents,
and increase redundancy. Peer-to-peer replication introduced in SQL Server 2005 is very suitable in this
scenario.

Because we are just demonstrating how to set up an inventory, in our simplified example the inventory
database resides on the default instance on a standalone host POWERPC. We store the data and log file
under D:\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\DATA. We’ll first create the inventory
database and call it SQL Inventory. Here is the script, CreateSQL_Inventory.sql:

CREATE DATABASE [SQL_Inventory] ON
(NAME = N’SQL_Inventory’,
FILENAME = N’D:\Microsoft SQL
Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\SQL_Inventory.mdf’,
SIZE = 1024MB , MAXSIZE = UNLIMITED, FILEGROWTH = 1024MB)
LOG ON
(NAME = N’SQL_Inventory_log’,
FILENAME = N’D:\Microsoft SQL
Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\SQL_Inventory_log.LDF’,
SIZE = 512MB , MAXSIZE = UNLIMITED, FILEGROWTH = 10%)
GO

When you create your own inventory database, please make sure you change the path to work for your
environment.

We also define two variables, $inventoryServer and $inventoryDatabase, which store the inventory
database information in the library file dbaLib.ps1 under C:\DBAScripts. We can just refer to the two
variables later when connecting with the inventory database.

##
Define inventory server and database
##
[String] $inventoryServer="POWERPC,1433"
[String] $inventoryDatabase="SQL_Inventory"

In our example environment, we have five machines on which SQL Server instances have been
installed:

1. POWERPC: Hosts a default instance MSSQLSERVER and INSTANCE1

2. POWERSERVER3: Hosts a default instance MSSQLSERVER

3. DEMOPC: Hosts a default instance MSSQLSERVER and named instance CH0DE1

4. NODE1: One of the two nodes of the Windows Cluster PowerCluster. The Windows cluster
hosts a default failover cluster instance SQL2008CLUSTER.

5. NODE2: One of the two nodes of the Windows Cluster PowerCluster. The Windows cluster
hosts a default failover cluster instance SQL2008CLUSTER.

Considering the complexity of the enterprise environment, the scripts shown in this chapter can be run in
an environment with different Windows operating systems, including Windows 2000 Server, Windows

334

Chapter 15: Building SQL Server Inventory

Server 2003, Windows Vista and Windows Server 2008, and different SQL Server products, including
SQL Server 2000, 2005, and 2008.

In the next chapter, we will show you how we installed the named instance INSTANCE1 on
POWERPC and the failover cluster default instance SQLCLUSTER2008, and how we used the scripts in
this chapter to record the host and server information before and after the installations.

The inventory database contains the following primary tables:

❑ Hosts: Stores information about SQL Server hosts

❑ Clusters: Stores information about SQL Server clusters

❑ ClusterNodes: Stores information about nodes in each SQL Server cluster

❑ Servers: Stores information about SQL Server instances

❑ ServerDatabases: Stores information about each database on each SQL Server

Hosts
The Hosts table contains information about all the SQL server hosts. The schema of the Hosts table is
described in Table 15-1.

Table 15-1: Hosts Table Schema

Column DataType Description

hostID int identity(1000,1) ID of the host; and the primary key

hostName varchar(128) Name of the SQL Server host

region char(2) Region in which the SQL Server host is located
(e.g., NA, EU, and AS)

location char(2) Code of the city in which the SQL host is
located (e.g., NY for New York, CH for
Chicago)

description varchar(500) Description of purposes of the SQL Server host

primaryBU varchar(128) Primary business unit that owns the host

timeZone varchar(128) Standard time zone of the host

enableDaylightSavingsTime bit Indicates if daylight saving time (DST) is
enabled on the host

domain varchar(128) Domain of the host

Continued

335

Chapter 15: Building SQL Server Inventory

Table 15-1: Hosts Table Schema (continued)

Column DataType Description

manufacturer varchar(128) Name of the host’s computer manufacturer
(e.g. Dell, HP)

model varchar(128) Product name that the manufacturer gives to
the host

systemType varchar(128) System running on the Windows-based
computer (e.g., X86-based PC, 64-bit Intel PC)

systemStartupOptions varchar(128) List of the options for starting up the computer
system running Windows

numberOfProcessors tinyint Number of logical processors available on the
computer

numberOfLogicalProcessors tinyint Number of physical processors available on the
computer

totalPhysicalMemory bigint Total size of physical memory

countryCode varchar(128) Country code that the host uses

lastBootUpTime smalldatetime Date and time the host was last restarted

locale varchar(128) Language identifier used by the host

OS varchar(128) Operating system used by the host

version varchar(128) Version number of the operating system

servicePackMajorVersion varchar(10) Major version number of the service pack of the
OS installed on the host

servicePackMinorVersion varchar(10) Minor version number of the service pack of the
OS installed on the host

buildNumber varchar(20) Build number of an operating system

installDate smalldatetime When the host was first built or rebuilt

totalVisibleMemorySize bigint Number, in kilobytes, of physical memory
available to the operating system. This value
does not necessarily indicate the true amount of
physical memory, but what is reported to the
operating system as available to it.

Continued

336

Chapter 15: Building SQL Server Inventory

Table 15-1: Hosts Table Schema (continued)

Column DataType Description

totalVirtualMemorySize bigint Number, in kilobytes, of virtual memory

pagingFileSize bigint Total number of kilobytes that can be stored in
the operating system paging files — 0 (zero)
indicates that there are no paging files.

IP1 varchar(128) IP Address 1 used by the host

IP2 varchar(128) IP Address 2 used by the host

IP3 varchar(128) IP Address 3 used by the host

IP4 varchar(128) IP Address 4 used by the host

IP5 varchar(128) IP Address 5 used by the host

IP6 varchar(128) IP Address 6 used by the host

createDate smalldatetime Date and time the host record was created

updateDate smalldatetime Date and time the host record was last updated

Here is a SQL script, CreateHosts.sql, to create the Hosts table:

USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].[Hosts]’)
AND type in (N’U’))
DROP TABLE [dbo].[Hosts]
GO
CREATE TABLE [dbo].[Hosts](
[hostID] [int] IDENTITY(1000,1) NOT NULL CONSTRAINT PK_hostID PRIMARY KEY CLUSTERED,
[hostName] [varchar](128) NOT NULL CONSTRAINT IX_hostName UNIQUE,
[region] [char](2) NOT NULL,
[location] [char](2) NOT NULL,
[description] [varchar](500) NULL,
[primaryBU] [varchar](128) NOT NULL,
[timeZone] [varchar](128) NULL,
[enableDaylightSavingsTime] [bit] NULL,
[domain] [varchar](128) NULL,
[manufacturer] [varchar](128) NULL,
[model] [varchar](128) NULL,
[systemType] [varchar](128) NULL,
[systemStartupOptions] [varchar](128) NULL,
[numberOfProcessors] [tinyint] NULL,
[numberOfLogicalProcessors] [tinyint] NULL,
[totalPhysicalMemory] [bigint] NULL,

337

Chapter 15: Building SQL Server Inventory

[countryCode] [varchar](128) NULL,
[lastBootUpTime] [smalldatetime] NULL,
[locale] [varchar](128) NULL,
[OS] [varchar](128) NULL,
[version] [varchar](128) NULL,
[servicePackMajorVersion] [varchar](10) NULL,
[servicePackMinorVersion] [varchar](10) NULL,
[buildNumber] [varchar](20) NULL,
[installDate] [datetime] NULL,
[totalVisibleMemorySize] [bigint] NULL,
[totalVirtualMemorySize] [bigint] NULL,
[pagingFileSize] [bigint] NULL,
[IP1] [varchar](128) NULL,
[IP2] [varchar](128) NULL,
[IP3] [varchar](128) NULL,
[IP4] [varchar](128) NULL,
[IP5] [varchar](128) NULL,
[IP6] [varchar](128) NULL,
[createDate] [smalldatetime] NOT NULL,
[updateDate] [smalldatetime] NOT NULL,
) ON [PRIMARY]
GO

We also need a stored procedure, uspUpsertHosts, to insert a host record when the host does not
exist in the inventory, or update a host record when the host already exists. This stored procedure
will be called later in the Upsert-Host.ps1 script to manage the Hosts table. The following script,
uspUpsertHosts.sql, is used to create the stored procedure uspUpsertHosts:

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N’[dbo].[uspUpsertHosts]’) AND type in (N’P’, N’PC’))
DROP PROCEDURE [DBO].[uspUpsertHosts]
GO
CREATE PROCEDURE [dbo].[uspUpsertHosts]

@hostName [varchar] (128),
@region [char] (2),
@location [char] (2),
@description [varchar] (500),
@primaryBU [varchar] (128),
@timeZone [varchar] (128),
@enableDaylightSavingsTime [bit],
@domain [varchar] (128),
@manufacturer [varchar] (128),
@model [varchar] (128),
@systemType [varchar] (128),
@systemStartupOptions [varchar] (128),
@numberOfProcessors [tinyint],
@numberOfLogicalProcessors [tinyint],
@totalPhysicalMemory [bigint],
@countryCode [varchar] (128),

338

Chapter 15: Building SQL Server Inventory

@lastBootUpTime [smalldatetime],
@locale [varchar] (128),
@OS [varchar] (128),
@version [varchar] (128),
@servicePackMajorVersion [varchar] (10),
@servicePackMinorVersion [varchar] (10),
@buildNumber [varchar] (20),
@installDate [smalldatetime],
@totalVisibleMemorySize [bigint],
@totalVirtualMemorySize [bigint],
@pagingFileSize [bigint],
@IP1 [varchar] (128),
@IP2 [varchar] (128),
@IP3 [varchar] (128),
@IP4 [varchar] (128),
@IP5 [varchar] (128),
@IP6 [varchar] (128)

AS
DECLARE @ERRORCODE [int], @ERRMSG [varchar] (128)

-- If the host doesn’t exist in the Hosts table, then perform an insertion.
IF NOT EXISTS (SELECT hostID FROM dbo.Hosts WHERE hostName=@hostName)

INSERT [dbo].[Hosts]
(hostName

, region
, location
, description
, primaryBU
, timeZone
, enableDaylightSavingsTime
, domain
, manufacturer
, model
, systemType
, systemStartupOptions
, numberOfProcessors
, numberOfLogicalProcessors
, totalPhysicalMemory
, countryCode
, lastBootUpTime
, locale
, OS
, version
, servicePackMajorVersion
, servicePackMinorVersion
, buildNumber
, installDate
, totalVisibleMemorySize
, totalVirtualMemorySize
, pagingFileSize
, IP1
, IP2
, IP3
, IP4
, IP5
, IP6

339

Chapter 15: Building SQL Server Inventory

, createDate
, updateDate
)

VALUES(
@hostName

, @region
, @location
, @description
, @primaryBU
, @timeZone
, @enableDaylightSavingsTime
, @domain
, @manufacturer
, @model
, @systemType
, @systemStartupOptions
, @numberOfProcessors
, @numberOfLogicalProcessors
, @totalPhysicalMemory
, @countryCode
, @lastBootUpTime
, @locale
, @OS
, @version
, @servicePackMajorVersion
, @servicePackMinorVersion
, @buildNumber
, @installDate
, @totalVisibleMemorySize
, @totalVirtualMemorySize
, @pagingFileSize
, @IP1
, @IP2
, @IP3
, @IP4
, @IP5
, @IP6
, GETDATE()
, GETDATE()
)

-- If the host already exists in the Hosts table, then perform an update.
ELSE
UPDATE [dbo].[Hosts]

SET [region] = @region
,[location] = @location
,[description] = @description
,[primaryBU] = @primaryBU
,[timeZone] = @timeZone
,[enableDaylightSavingsTime] = @enableDaylightSavingsTime
,[domain] = @domain
,[manufacturer] = @manufacturer
,[model] = @model
,[systemType] = @systemType
,[systemStartupOptions] = @systemStartupOptions
,[numberOfProcessors] = @numberOfProcessors
,[numberOfLogicalProcessors] = @numberOfLogicalProcessors

340

Chapter 15: Building SQL Server Inventory

,[totalPhysicalMemory] = @totalPhysicalMemory
,[countryCode] = @countryCode
,[lastBootUpTime] = @lastBootUpTime
,[locale] = @locale
,[OS] = @OS
,[version] = @version
,[servicePackMajorVersion] = @servicePackMajorVersion
,[servicePackMinorVersion] = @servicePackMinorVersion
,[buildNumber] = @buildNumber
,[installDate] = @installDate
,[totalVisibleMemorySize] = @totalVisibleMemorySize
,[totalVirtualMemorySize] = @totalVirtualMemorySize
,[pagingFileSize] = @pagingFileSize
,[IP1] = @IP1
,[IP2] = @IP2
,[IP3] = @IP3
,[IP4] = @IP4
,[IP5] = @IP5
,[IP6] = @IP6
,[updateDate] = GETDATE()

WHERE hostName=@hostName

SET @ERRORCODE = @@ERROR
IF @ERRORCODE <> 0

BEGIN
SET @ERRMSG = ’Insert failed - ’ + OBJECT_NAME(@@PROCID)
SET @ERRMSG = @ERRMSG + ’ Error Code: ’ + RTRIM(CONVERT(CHAR, @ERRORCODE))
RAISERROR (@ERRMSG, 16, 1)
RETURN (-1)

END
ELSE

RETURN (0)
GO

After the Hosts table has been defined and the associated stored procedure has been created, we need
a script, Upsert-Host.ps1, to insert a SQL Server host record into the inventory when we are about to
install an SQL Server instance on it. This host can be a standalone host or a node in a SQL Server cluster.
After the installation, if you run the script against the same host for the second time, the script will update
the information for the existing host record. The usage of this script is as follows:

Upsert-Host -hostName <string[]> -region <string[]> -location <string[]> -primaryBU
<string[]> [-description <string[]>]

The complete script, which is available for download from the Wrox website for this book at
www.wrox.com, is as follows:

===
#
NAME: Upsert-Host.ps1
#
AUTHOR: Yan and MAK
DATE : 6/8/2008
#
COMMENT: This script inserts a SQL Server host record into inventory.

341

Chapter 15: Building SQL Server Inventory

If the host already exists, then this script updates the existing host record.
Example: Upsert-Host.ps1 -hostName POWERPC -region NA -location CH -primaryBU STP -
description ’For STP application testing’
===

##
Initialize parameters
##
param (

[switch]$help,
[string]$hostName = {}, # Name of the host to add into inventory.

[string]$region = {}, # Region of the SQL Server host. For example, NA, EU and
AS.

[string]$location = {}, # Code of the city in which the SQL host locates. For
example, NY for New York, CH for Chicago.

[string]$primaryBU = {}, # Primary BU that owns this host
[string]$description = {} # Brief description of the host. For example, which

application/project the host supports.
)

function ConvertBoolToBit([Boolean] $expr)
{

if ($expr) { return "1" }
else { return "0" }

}

function ConvertOSTime([String] $osTime)
{

return $osTime.SUBSTRING(0, 4) + "-" + $osTime.SUBSTRING(4, 2) + ’-’ +
$osTime.SUBSTRING(6, 2) + ’ ’ + ‘

$osTime.SUBSTRING(8, 2) + ’:’ + $osTime.SUBSTRING(10, 2)
}

##
Main Program
##
[String] $strUpsertSql=""

if ($help) {
"Usage: UpSert-Host -hostName <string[]> -region <string[]> -location

<string[]> -primaryBU <string[]> [-description <string[]>]"
exit 0

}

if ($hostName.Length -eq 0) {
"Please enter a host name."
exit 1

}

if ($region -notmatch ’ ˆ NA|EU|AS$’) {
"The region is invalid. Please enter NA, EU or AS."
exit 1

}

342

Chapter 15: Building SQL Server Inventory

if ($location -notmatch ’ ˆ \w{2}$’) {
"The location is invalid. Please enter a 2-character city code."
exit 1

}

if ($primaryBU.Length -eq 0) {
"Please enter a primary BU."
exit 1

}

Construct the insert statement
$strUpsertSql = $strUpsertSql + "exec uspUpsertHosts ’$hostName’, ’$region’,
’$location’, ’$description’, ’$primaryBU’, "

Get the time zone
$reg = [WMIClass]"\\$hostName\root\default:stdRegProv"
$HKEY_LOCAL_MACHINE = 2147483650
$strKeyPath = "SYSTEM\CurrentControlSet\Control\TimeZoneInformation"

if ($reg.GetStringValue($HKEY_LOCAL_MACHINE,$strKeyPath,"TimeZoneKeyName").svalue) {
$strUpsertSql = $strUpsertSql + "’" + $reg.GetStringValue($HKEY_LOCAL_MACHINE,

$strKeyPath,"TimeZoneKeyName").svalue + "’, "
}
else
{

$strUpsertSql = $strUpsertSql + "’" + $reg.GetStringValue($HKEY_LOCAL_MACHINE,
$strKeyPath,"StandardName").svalue + "’, "

}

$cs = Get-WMIObject -computerName $hostName -class Win32_ComputerSystem

Get the setting of the daylight savings time
This property is only available for Windows XP or later
if ($cs.EnableDaylightSavingsTime) {

$enableDST=(ConvertBoolToBit $cs.EnableDaylightSavingsTime)
}
else
{

$strKeyPath = "SYSTEM\CurrentControlSet\Control\TimeZoneInformation"
switch ($reg.GetDWORDValue($HKEY_LOCAL_MACHINE,$strKeyPath,"

DisableAutoDaylightTimeSet").uValue) {
1 {$enableDST="0"}
default {$enableDST="1"}
}

}

Get the number of logical processors
This property is only available for Windows XP or later
if ($cs.NumberOfLogicalProcessors) {

$numLogicalProcessors=$cs.NumberOfLogicalProcessors
}
else
{

$numLogicalProcessors=$cs.NumberOfProcessors
}

343

Chapter 15: Building SQL Server Inventory

$strUpsertSql = $strUpsertSql + $enableDST + ", ’" + $cs.Domain + "’, ’" ‘
+ $cs.Manufacturer.Trim() + "’, ’" + $cs.Model.Trim() + "’, ’" +
$cs.SystemType + "’, ’"‘
+ $cs.SystemStartupOptions + "’, " + $cs.NumberOfProcessors + "," ‘
+ $numLogicalProcessors + ", " + $cs.TotalPhysicalMemory + ", "

Get the Operating System information, such as country code, last bootup time, etc.
$os = Get-WMIObject -computerName $hostName -class Win32_OperatingSystem

$strUpsertSql = $strUpsertSql + "’" + $os.CountryCode + "’, ’" + (ConvertOSTime
$os.LastBootUpTime) + "’, ’" + $os.Locale + "’, ’" ‘
+ $os.Name + "’, ’" + $os.Version + "’, ’" + $os.ServicePackMajorVersion + "’, ’" ‘
+ $os.ServicePackMinorVersion + "’, ’" + $os.BuildNumber + "’, ’" + (ConvertOSTime
$os.InstallDate) + "’, " ‘
+ $os.TotalVisibleMemorySize + ", " ‘
+ $os.TotalVirtualMemorySize + ", " + $os.SizeStoredInPagingFiles

Get the IP address information.
$IPArr= (get-wmiobject -computername $hostname -class
"Win32_NetworkAdapterConfiguration" | where {$_.IpEnabled -match "True" })

if ($IPArr.Length) {
for ($i=0; $i -lt 6; $i++) {

if ($i -lt $IPArr.Length) {
$strUpsertSql = $strUpsertSql + ", ’" + $IPArr[$i].IPAddress[0]

+ "’"
}
else {

$strUpsertSql = $strUpsertSql + ", ’’"
}

}
}
else {

$strUpsertSql = $strUpsertSql + ", ’" + $IPArr.IPAddress[0] + "’, ’’, ’’,
’’, ’’, ’’"
}

$strUpsertSql=$strUpsertSql + ";"
$strUpsertSql

Invoke-Sqlcmd -Query $strUpsertSql -ServerInstance $inventoryServer -Database
$inventoryDatabase

We pass the host name, region, location, and primary BU (business unit) to the script. The description
is optional. The script connects with the host to retrieve machine-specific information from the
Win32 ComputerSystem and Win32 OperatingSystem classes, and stores the information in the Hosts
table.

Figure 15-1 shows the result from running the following commands:

. C:\DBAScripts\dbaLib.ps1
Add a DBA inventory host.

344

Chapter 15: Building SQL Server Inventory

C:\DBAScripts\Upsert-Host.ps1 -hostName POWERPC -region NA -location CH -primaryBU
DBA -description ’DBA Inventory Server’

Add a database host for testing Straight Through Processing (STP) application.
C:\DBAScripts\Upsert-Host.ps1 -hostName POWERSERVER3 -region NA -location NY
-primaryBU STP -description ’STP application test server’

Add a database host for Global Wealth Management (GWM) unit.
C:\DBAScripts\Upsert-Host.ps1 -hostName DEMOPC -region NA -location CH -primaryBU
GWM -description ’Database Server for GWM’

Add node 1 of a cluster for Investment Banking Division (IBD).
C:\DBAScripts\Upsert-Host.ps1 -hostName NODE1 -region NA -location CH -primaryBU
IBD -description ’IBD database cluster node 1’

Add node 2 of a cluster for Investment Banking Division (IBD).
C:\DBAScripts\Upsert-Host.ps1 -hostName NODE2 -region NA -location CH -primaryBU
IBD -description ’IBD database cluster node 2’

Figure 15-1

345

Chapter 15: Building SQL Server Inventory

After the insertions, the Hosts table appears as shown in Figure 15-2.

Figure 15-2

Cluster s
The Clusters table contains information on all the SQL Server clusters. The schema of the Clusters table
is shown in Table 15-2.

Table 15-2: Clusters Table Schema

Column DataType Description

ClusterID int identity(1000,1) ID of the SQL Server cluster

SQLClusterName varchar(128) Name of the SQL Server cluster

WindowsClusterName varchar(128) Name of the Windows cluster on which this SQL
Server cluster runs

numberOfNodes tinyint Number of the nodes in the SQL Server cluster

clusteringMethod varchar(128) Method used for clustering, such as Veritas or MSCS

createDate smalldatetime Date and time the cluster record was created

updateDate smalldatetime Date and time the cluster record was last updated

346

Chapter 15: Building SQL Server Inventory

Here is a script, CreateClusters.sql, to create the Clusters table:

USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].[Clusters]’)
AND type in (N’U’))
DROP TABLE [dbo].[Clusters]
GO
CREATE TABLE [dbo].[Clusters](
clusterID Int identity(1000,1) NOT NULL CONSTRAINT PK_clusterID PRIMARY KEY
CLUSTERED,
SQLClusterName [varchar](128) NOT NULL,
WindowsClusterName Varchar(128) NOT NULL,
numberOfNodes Tinyint,
clusteringMethod Varchar(128),
createDate Smalldatetime NOT NULL,
updateDate Smalldatetime NOT NULL
)
GO

We also need a stored procedure, uspUpsertClusters, to insert a cluster record when the cluster does not
exist in the inventory, or to update a cluster record when the cluster already exists. This stored procedure
will be called later in the Upsert-Cluster.ps1 script to manage the Clusters table. The following script,
uspUpsertClusters.sql, is used to create the stored procedure uspUpsertClusters:

USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N’[dbo].[uspUpsertClusters]’) AND type in (N’P’, N’PC’))
DROP PROCEDURE [dbo].[uspUpsertClusters]
GO
CREATE PROCEDURE [DBO].[uspUpsertClusters]

@SQLClusterName [varchar] (128),
@WindowsClusterName [varchar] (128),
@numberOfNodes [tinyint] ,
@clusteringMethod [varchar] (128)

AS
DECLARE @ERRORCODE [int], @ERRMSG [varchar] (128)

-- If the cluster doesn’t exist in the Clusters table, then perform an insertion.
IF EXISTS (SELECT ClusterID FROM [dbo].[Clusters] WHERE SQLClusterName=
@SQLClusterName)
BEGIN

UPDATE [dbo].[Clusters]
SET [WindowsClusterName]=@WindowsClusterName,

[numberOfNodes]=@numberOfNodes,
[clusteringMethod]=@clusteringMethod,
[updateDate]=getDate()

WHERE SQLClusterName=@SQLClusterName
END
-- If the cluster already exists in the Clusters table, then perform an update.
ELSE

347

Chapter 15: Building SQL Server Inventory

BEGIN
INSERT [dbo].[Clusters]

(SQLClusterName
, WindowsClusterName
, numberOfNodes
, clusteringMethod
, createDate
, updateDate
)

VALUES(
@SQLClusterName

, @WindowsClusterName
, @numberOfNodes
, @clusteringMethod
, GETDATE()
, GETDATE()
)

END

SET @ERRORCODE = @@ERROR
IF @ERRORCODE <> 0

BEGIN
SET @ERRMSG = ’Upsert failed - ’ + OBJECT_NAME(@@PROCID)
SET @ERRMSG = @ERRMSG + ’ Error Code: ’ + RTRIM(CONVERT(CHAR, @ERRORCODE))
RAISERROR (@ERRMSG, 16, 1)
RETURN (-1)

END
GO

After the Clusters table has been defined and the associated stored procedure has been created, we
need a script, Upsert-Cluster.ps1, to insert a SQL Server cluster name, its Windows cluster name,
the number of nodes it has, and the clustering method it uses. If MSCS (Microsoft Clustering Service)
is used, then the SQL Server cluster name is the name of a Network Name resource, and it is different
from the Windows cluster name. If VCS (Veritas Cluster Server) is used, then the SQL Server cluster
name is the name of an IPService resource, and it can be the same as the Windows cluster name. The
Upsert-Cluster.ps1 script inserts a cluster record if the cluster doesn’t exist, or updates the information
for the existing cluster record if the cluster already exists in the Clusters table. The usage of this script is
as follows:

Upsert-Cluster.ps1 –SQLClusterName <string[]> -WindowsClusterName <string[]> -
numberOfNodes <int16> -clusteringMethod <string[]>

The following complete script is available for download from the Wrox website for this book:

#===
#
NAME: Upsert-Cluster.ps1
#
AUTHOR: Yan and MAK
DATE : 6/8/2008
#
COMMENT: This script inserts a SQL Server cluster record into inventory.

348

Chapter 15: Building SQL Server Inventory

If the cluster already exists, then this script updates the existing cluster record.
Example: Upsert-Cluster.ps1 -SQLClusterName SQL2008CLUSTER -WindowsClusterName
PowerCluster -numberOfNodes 2 -clusteringMethod MSCS
#===

##
Initialize parameters
##
param (

[switch]$help,
[string]$SQLClusterName = {}, # IP Name of the SQL Server failover cluster.
[string]$WindowsClusterName = {}, # IP Name of the Windows server cluster.
[Int16]$numberOfNodes = {}, # Number of nodes in the SQL Server failover

cluster.
[string]$clusteringMethod = {} # Clustering method used to cluster the Windows

Servers.
)

##
Main Program
##
[String] $strUpsertSql=""

if ($help) {
"Usage: Upsert-Cluster.ps1 -SQLClusterName <string[]> -WindowsClusterName

<string[]> -numberOfNodes <Int16> -clusteringMethod <string[]>"
exit 0
}

if ($SQLClusterName.Length -eq 0) {
"Please enter a SQL Server failover cluster."
exit 1

}

if ($WindowsClusterName.Length -eq 0) {
"Please enter a Windows server cluster name."
exit 1

}

if ($numberOfNodes -le 0) {
"The number of nodes must be greater than zero."
exit 1

}

if ($clusteringMethod.Length -eq 0) {
"Please enter a clustering method."
exit 1

}

Construct the insert statement.
$strUpsertSql = $strUpsertSql + "exec uspUpsertClusters ’$SQLClusterName’,
’$WindowsClusterName’, $numberOfNodes, ’$clusteringMethod’;"
$strUpsertSql

349

Chapter 15: Building SQL Server Inventory

Invoke-Sqlcmd -Query $strUpsertSql -ServerInstance $inventoryServer -Database
$inventoryDatabase

For example, let’s insert the SQL Server cluster SQL2008CLUSTER on the Windows cluster PowerCluster
into the inventory (see Figure 15-3):

. C:\DBAScripts\dbaLib.ps1
C:\DBAScripts\Upsert-Cluster.ps1 -SQLClusterName SQL2008CLUSTER -WindowsClusterName
PowerCluster -numberOfNodes 2 -clusteringMethod MSCS

Figure 15-3

After the insertion, the Clusters table appears as shown in Figure 15-4.

Figure 15-4

ClusterNodes
The ClusterNodes table associates SQL Server clusters with their individual nodes. The schema of the
ClusterNodes table is shown in Table 15-3.

Here is the script to create the ClusterNodes table:

USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo]

350

Chapter 15: Building SQL Server Inventory

.[ClusterNodes]’) AND type in (N’U’))
DROP TABLE [dbo].[ClusterNodes]
GO
CREATE TABLE [dbo].[ClusterNodes](
clusterID int,
nodeID int,
createDate smalldatetime NOT NULL,
updateDate smalldatetime NOT NULL
)
GO

Table 15-3: ClusterNodes Table Schema

Column DataType Description

clusterID int ID of the SQL Server cluster. This ID comes from the Clusters table.

nodeID int Host ID of a node in the cluster. This ID comes from the Hosts table.

createDate smalldatetime Date and time the cluster node record was created.

updateDate smalldatetime Date and time the cluster node record was last updated.

We also need a stored procedure, uspUpsertClusterNodes, to associate the host ID of a new cluster
node with the ID of its cluster. This stored procedure will be called later in the Upsert-ClusterNode.ps1
script to manage the ClusterNodes table. The script uspUpsertClusterNodes.sql, shown here, is used
to create the stored procedure uspUpsertClusterNodes:

USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N’[dbo].[uspUpsertClusterNodes]’) AND type in (N’P’, N’PC’))

DROP PROCEDURE [dbo].[uspUpsertClusterNodes]
GO
CREATE PROCEDURE [DBO].[uspUpsertClusterNodes]

@SQLClusterName [varchar] (128),
@nodeName [varchar] (128)

AS
DECLARE @ERRORCODE [int], @ERRMSG [varchar] (128)
DECLARE @clusterID [int], @nodeID [int]

-- Get cluster ID
IF EXISTS (SELECT clusterID FROM [dbo].[Clusters] WHERE SQLClusterName=
@SQLClusterName)

SELECT @clusterID=clusterID FROM [dbo].[Clusters] WHERE
SQLClusterName=@SQLClusterName
ELSE

SELECT @clusterID=0

-- Get host ID of the node

351

Chapter 15: Building SQL Server Inventory

IF EXISTS (SELECT hostID FROM [dbo].[Hosts] WHERE hostName=@nodeName)
SELECT @nodeID=hostID FROM [dbo].[Hosts] WHERE hostName=@nodeName

ELSE
SELECT @nodeID=0

-- If the cluster does not exist in the Clusters table, raise an error and then quit.
IF (@clusterID = 0)
BEGIN

SET @ERRMSG = ’Upsert failed - ’ + OBJECT_NAME(@@PROCID)
SET @ERRMSG = @ERRMSG + ’SQL Server Cluster ’ + @SQLClusterName + ’ does not

exist in the inventory.’
RAISERROR (@ERRMSG, 16, 1)
RETURN (-1)

END

-- If the node does not exist in the Hosts table, raise an error and then quit.
IF (@nodeID = 0)
BEGIN

SET @ERRMSG = ’Upsert failed - ’ + OBJECT_NAME(@@PROCID)
SET @ERRMSG = @ERRMSG + ’Host ’ + @nodeName + ’ does not exist in the

inventory.’
RAISERROR (@ERRMSG, 16, 1)
RETURN (-1)

END

-- If the cluster node record already exists in the inventory, then perform an update.
IF EXISTS (SELECT * FROM [dbo].[ClusterNodes] WHERE clusterID=@clusterID and
nodeID=@nodeID)
BEGIN

UPDATE [dbo].[ClusterNodes]
SET [updateDate]=getDate()
WHERE clusterID=@clusterID and nodeID=@nodeID

END
-- If the cluster node record does not exist in the inventory, then perform an
insertion.
ELSE
BEGIN
INSERT [dbo].[ClusterNodes]

(clusterID
, nodeID
, createDate
, updateDate
)

VALUES(
@clusterID
, @nodeID
, GETDATE()
, GETDATE()
)

END

SET @ERRORCODE = @@ERROR
IF @ERRORCODE <> 0

BEGIN
SET @ERRMSG = ’Upsert failed - ’ + OBJECT_NAME(@@PROCID)

352

Chapter 15: Building SQL Server Inventory

SET @ERRMSG = @ERRMSG + ’ Error Code: ’ + RTRIM(CONVERT(CHAR, @ERRORCODE))
RAISERROR (@ERRMSG, 16, 1)
RETURN (-1)

END
GO

The Upsert-ClusterNode.ps1 script invokes the uspUpsertClusterNodes stored procedure and adds
new cluster node information to the ClusterNodes table. The usage of this script is as follows:

Upsert-ClusterNode.ps1 -SQLClusterName <string[]> -nodeName <string[]>

The complete script, also available for download from the Wrox website, is as follows:

#===
#
NAME: Upsert-ClusterNode.ps1
#
AUTHOR: Yan and MAK
DATE : 6/8/2008
#
COMMENT: This script inserts a SQL Server ClusterNode record into inventory.
If the ClusterNode already exists, then this script updates the existing
ClusterNode record.
Example: Upsert-ClusterNode.ps1 –SQLClusterName SQL2008CLUSTER –nodeName NODE1
#===

##
Initialize parameters
##
param (

[switch]$help,
[string]$SQLClusterName = {}, # IP Name of the SQL Server failover cluster.
[string]$nodeName = {} # Host name of the node being added.

)

##
Main Program
##
[String] $strUpsertSql=""

if ($help) {
"Usage: Upsert-ClusterNode.ps1 -SQLClusterName <string[]> -nodeName <string[]>"
exit 0

}

if ($SQLClusterName.Length -eq 0) {
"Please enter a SQL Server failover cluster name."
exit 1

}

if ($nodeName.Length -eq 0) {
"Please enter a node name."
exit 1

353

Chapter 15: Building SQL Server Inventory

}

$strUpsertSql = $strUpsertSql + "exec uspUpsertClusterNodes ’$SQLClusterName’,
’$nodeName’;"
$strUpsertSql

Invoke-Sqlcmd -Query $strUpsertSql -ServerInstance $inventoryServer -Database
$inventoryDatabase

The following inserts the two nodes of the SQL Server cluster SQL2008CLUSTER, NODE1 and NODE2
(see Figure 15-5):

. C:\DBAScripts\dbaLib.ps1
C:\DBAScripts\Upsert-ClusterNode.ps1 –SQLClusterName SQL2008CLUSTER –nodeName NODE1

C:\DBAScripts\Upsert-ClusterNode.ps1 –SQLClusterName SQL2008CLUSTER –nodeName NODE2

Figure 15-5

Figure 15-6 shows the ClusterNodes table after the script was executed.

Figure 15-6

354

Chapter 15: Building SQL Server Inventory

Ser vers
The Servers table contains information about all the SQL Server instances. The schema of the Servers
table is shown in Table 15-4.

Table 15-4: Servers Table Schema

Column DataType Description

serverID int identity(1000,1) ID of the SQL Server

instanceName varchar(128) MSSQLSERVER for the default instance. For a named
instance, instanceName = serverName.

hosted int Contains the ID of the standalone host of the SQL Server.
Null if the server is on a cluster.

clustered int Contains the ID of the cluster hosting this server. Null if
the server is on a standalone host.

Status char(1) Status of this server. Possible values include D
(Development), Q (Quality Assurance), P (Production),
U (User Acceptance Testing), and R (Disaster Recovery).

tcpPort varchar(10) TCP port on which the SQL Server is listening

serverNetwork
Protocols

varchar(128) Network protocols used by the SQL server

Type varchar(10) 2008, 2005, or 2000

Edition varchar(128) Enterprise, Standard, or Developer

Version varchar(20) 10.0.1300

servicePack varchar(10) Service pack installed on the SQL Server

startupParameters varchar(512) Parameters used at SQL Server startup

systemDbDevice varchar(512) Path to the directory that contains system databases

errorLogLocation varchar(512) Path to the SQL Server ErrorLog

Collation varchar(128) Collation of the SQL Server

minMemory bigint Minimum memory configured for the SQL Server

Continued

355

Chapter 15: Building SQL Server Inventory

Table 15-4: Servers Table Schema (continued)

Column DataType Description

maxMemory bigint Maximum memory configured for the SQL Server

AWEEnabled bit Indicates whether Address Windowing Extensions
(AWE) is enabled

maxUser
Connections

int Maximum number of user connections that are allowed
to connect with the SQL Server at the same time

createDate smalldatetime Date and time the server record was created

updateDate smalldatetime Date and time the server record was last updated

Here is a SQL script, Create-Servers.ps1, to create the Servers table:

USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].[Servers]’)
AND type in (N’U’))
DROP TABLE [dbo].[Servers]
GO
CREATE TABLE [dbo].[Servers](
[serverID] [int] IDENTITY(1000,1) NOT NULL CONSTRAINT PK_serverID PRIMARY
KEY CLUSTERED,
[instanceName] [varchar](128) NOT NULL,
[hostID] [int] NULL,
[clusterID] [int] NULL,
[status] [char](1) NOT NULL,
[tcpPort] [smallint] NULL,
[serverNetworkProtocols] [varchar](128) NULL,
[type] [varchar](10) NULL,
[edition] [varchar](128) NULL,
[version] [varchar](20) NULL,
[servicePack] [varchar](10) NULL,
[startupParameters] [varchar](512) NULL,
[systemDbDevice] [varchar](512) NULL,
[errorLogLocation] [varchar](512) NULL,
[collation] [varchar](128) NULL,
[minMemory] [bigint] NULL,
[maxMemory] [bigint] NULL,
[AWEEnabled] [bit] NULL,
[maxUserConnections] [int] NULL,
[createDate] [smalldatetime] NULL,
[updateDate] [smalldatetime] NULL,
)

We need a stored procedure, uspUpsertServers, to insert a server record when the server does not exist
in the inventory, or to update a server record when the server already exists. This stored procedure will

356

Chapter 15: Building SQL Server Inventory

be called later in the Upsert-Server.ps1 script to manage the Servers table. In this stored procedure,
we test the parameters of the host name and the cluster name, and only one name should be valid. If
a server exists on a standalone host, then the clusterID column for the server record must be null,
and the hostID column must be valid. If a server exists on a cluster, then the hostID column must be
null, and the clusterID column must be valid. Here is the script used to create the stored procedure
uspUpsertServers:

USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N’[dbo].[uspUpsertServers]’) AND type in (N’P’, N’PC’))

DROP PROCEDURE [dbo].[uspUpsertServers]
GO
CREATE PROCEDURE [dbo].[uspUpsertServers]

@instanceName [varchar] (128),
@status [char] (1),
@hostName [varchar] (128),
@clusterName [varchar] (128),
@tcpPort [varchar] (10),
@serverNetworkProtocols [varchar] (128),
@type [varchar] (10),
@edition [varchar] (128),
@version [varchar] (128),
@servicePack [varchar] (128),
@startupParameters [varchar] (512),
@systemDbDevice [varchar] (512),
@errorLogLocation [varchar] (512),
@collation [varchar] (128),
@minMemory [bigint],
@maxMemory [bigint],
@AWEEnabled [bit],
@maxUserConnections [int]

AS
DECLARE @ERRORCODE [int], @ERRMSG [varchar] (128)
DECLARE @hostID [int], @clusterID [int]

-- If the server resides on a standalone host
IF (@hostName is NOT Null)
BEGIN

-- Verify the host name
SELECT @hostID = hostID FROM [dbo].[HOSTS] WHERE hostName=@hostName

IF (@hostID > 0)
BEGIN
-- If the server does not exist in the inventory, perform an insertion.
IF NOT Exists (SELECT serverID FROM dbo.Servers

WHERE instanceName = @instanceName and hostID = @hostID)
INSERT INTO [dbo].[Servers]
(instanceName
, hostID
, clusterID
, status
, tcpPort
, serverNetworkProtocols

357

Chapter 15: Building SQL Server Inventory

, type
, edition
, version
, servicePack
, startupParameters
, systemDbDevice
, errorLogLocation
, collation
, minMemory
, maxMemory
, AWEEnabled
, maxUserConnections
, createDate
, updateDate
)
VALUES(

@instanceName
, @hostID
, NULL
, @status
, @tcpPort
, @serverNetworkProtocols
, @type
, @edition
, @version
, @servicePack
, @startupParameters
, @systemDbDevice
, @errorLogLocation
, @collation
, @minMemory
, @maxMemory
, @AWEEnabled
, @maxUserConnections
, GETDATE()
, GETDATE()

)
-- If the server already exists in the inventory, perform an update.
ELSE

UPDATE [SQL_Inventory].[dbo].[Servers]
SET [status] = @status
,[tcpPort] = @tcpPort
,[serverNetworkProtocols] = @serverNetworkProtocols
,[type] = @type
,[edition] = @edition
,[version] = @version
,[servicePack] = @servicePack
,[startupParameters] = @startupParameters
,[systemDbDevice] = @systemDbDevice
,[errorLogLocation] = @errorLogLocation
,[collation] = @collation
,[minMemory] = @minMemory
,[maxMemory] = @maxMemory
,[AWEEnabled] = @AWEEnabled
,[maxUserConnections] = @maxUserConnections
,[updateDate] = GETDATE()

358

Chapter 15: Building SQL Server Inventory

WHERE instanceName = @instanceName and hostID = @hostID
END

-- If the host name is invalid, raise an error and exit.
ELSE

BEGIN
SET @ERRMSG = ’Upsert failed - ’ + OBJECT_NAME(@@PROCID)
SET @ERRMSG = @ERRMSG + ’ Host ’ + @hostName + ’ does not exist.

Please add the host first.’
RAISERROR (@ERRMSG, 16, 1)
RETURN (-1)

END
END
-- If the server resides on a cluster
ELSE
BEGIN

-- Verify the cluster name
SELECT @clusterID = clusterID FROM [dbo].[Clusters] WHERE

SQLClusterName=@clusterName
IF (@clusterID > 0)

BEGIN
-- If the server does not exist in the inventory, perform an insertion.
IF NOT Exists (SELECT serverID FROM dbo.Servers WHERE instanceName =

@instanceName and clusterID = @clusterID)
INSERT INTO [dbo].[Servers]
(instanceName
, hostID
, clusterID
, status
, tcpPort
, serverNetworkProtocols
, type
, edition
, version
, servicePack
, startupParameters
, systemDbDevice
, errorLogLocation
, collation
, minMemory
, maxMemory
, AWEEnabled
, maxUserConnections
, createDate
, updateDate
)
VALUES(

@instanceName
, NULL
, @clusterID
, @status
, @tcpPort
, @serverNetworkProtocols
, @type
, @edition
, @version
, @servicePack

359

Chapter 15: Building SQL Server Inventory

, @startupParameters
, @systemDbDevice
, @errorLogLocation
, @collation
, @minMemory
, @maxMemory
, @AWEEnabled
, @maxUserConnections
, GETDATE()
, GETDATE()

)
-- If the server already exists in the inventory, perform an update.
ELSE

UPDATE [SQL_Inventory].[dbo].[Servers]
SET [instanceName] = @instanceName
,[hostID] = NULL
,[clusterID] = @clusterID
,[status] = @status
,[tcpPort] = @tcpPort
,[serverNetworkProtocols] = @serverNetworkProtocols
,[type] = @type
,[edition] = @edition
,[version] = @version
,[servicePack] = @servicePack
,[startupParameters] = @startupParameters
,[systemDbDevice] = @systemDbDevice
,[errorLogLocation] = @errorLogLocation
,[collation] = @collation
,[minMemory] = @minMemory
,[maxMemory] = @maxMemory
,[AWEEnabled] = @AWEEnabled
,[maxUserConnections] = @maxUserConnections
,[updateDate] = GETDATE()

WHERE instanceName = @instanceName and clusterID = @clusterID
END

-- If the cluster name is invalid, raise an error and exit.
ELSE

BEGIN
SET @ERRMSG = ’Upsert failed - ’ + OBJECT_NAME(@@PROCID)
SET @ERRMSG = @ERRMSG + ’ Cluster ’ + @clusterName + ’

does not exist. Please add the cluster first.’
RAISERROR (@ERRMSG, 16, 1)
RETURN (-1)

END
END

SET @ERRORCODE = @@ERROR
IF @ERRORCODE <> 0

BEGIN
SET @ERRMSG = ’Upsert failed - ’ + OBJECT_NAME(@@PROCID)
SET @ERRMSG = @ERRMSG + ’ Error Code: ’ + RTRIM(CONVERT(CHAR, @ERRORCODE))
RAISERROR (@ERRMSG, 16, 1)
RETURN (-1)

END
GO

360

Chapter 15: Building SQL Server Inventory

After installing a SQL Server instance, we need a script, Upsert-Server.ps1, to insert the SQL server
record into the inventory. This script calls the uspUpsertServers stored procedure. For a SQL Server
instance on a standalone host, we pass a host name. For a SQL Server instance on a cluster, we pass a clus-
ter name. This script connects to the HKLM registry hive of the SQL Server host/cluster and retrieves the
TCP/IP port number on which the instance is listening. Then it connects with the SQL Server instance
with the port number, and retrieves the other information such as version, edition, and server config-
urations. If we run the script against the same server for the second time, the script will update the
information for the existing server record. The usage of this script is as follows:

Upsert-Server -instanceName <string[]> <<-hostName <string[]>|-clusterName
<string[]>> -status <string[]>

The complete script, which is available for download from the Wrox website for this book, is as follows:

#===
#
NAME: Upsert-Server.ps1
#
AUTHOR: Yan and MAK
DATE : 6/8/2008
#
COMMENT: This script adds a server record into inventory.
If the server already exists, then this script updates the existing server
record.
Example: Upsert-Server -instanceName MSSQLSERVER -hostName POWERPC -status U
#===

##
Initialize parameters
##
param (

[switch]$help,
[string]$instanceName = {}, # Name of the SQL Server instance to add into

inventory. For a default instance, it is MSSQLSERVER.
[string]$hostName = {}, # Name of the SQL Server host.
[string]$clusterName = {}, # Name of the SQL Server cluster.
[string]$status = {} # Status of the SQL Server instance. Possible values

include D, Q, P, U and R.
)

This function connects with a SQL Server instance [$pHostName\$pInstanceName,
$pTcpPort] to execute a SQL query $pSql.
function execSQL([String] $pHostName, [String] $pInstanceName, [String]
$pSql, [String] $pTcpPort)
{

if ($pInstanceName -eq ’MSSQLSERVER’) {
(Invoke-Sqlcmd -Query "$pSql" -ServerInstance "$pHostName,$pTcpPort" -

Database master).Column1
}
else {

(Invoke-Sqlcmd -Query "$pSql" -ServerInstance
"$pHostName\$pInstanceName,$pTcpPort" -Database master).Column1

}
}

361

Chapter 15: Building SQL Server Inventory

This function returns the statements that can be used to get a server configuration
in a column called Column1.
function getConfigSql([String] $option)
{

$strSql = "CREATE TABLE #temp (name nvarchar(35), minimum int, maximum int,
config_value int, run_value int)‘n"

$strSql = $strSql + "INSERT INTO #temp EXEC (‘’exec sp_configure
‘’‘’$option‘’‘’‘’)‘n"

$strSql = $strSql + "SELECT run_value as Column1 from #temp‘n"
$strSql = $strSql + "DROP TABLE #temp‘n"

return $strSql
}

This function connects to the HKLM registry hive of the SQL Server host $pHostName
and retrieve the TCP/IP port number that the instance $pInstanceName is
listening on.
function getTcpPort([String] $pHostName, [String] $pInstanceName)
{

$strTcpPort=""

$reg = [WMIClass]"\\$pHostName\root\default:stdRegProv"
$HKEY_LOCAL_MACHINE = 2147483650

Default instance
if ($pInstanceName -eq ’MSSQLSERVER’) {

#SQL Server 2000 or SQL Server 2005/2008 resides on the same server
as SQL Server 2000

$strKeyPath =
"SOFTWARE\Microsoft\MSSQLServer\MSSQLServer\SuperSocketNetLib\Tcp"
$strTcpPort=$reg.GetStringValue($HKEY_LOCAL_MACHINE,$strKeyPath,
"TcpPort").svalue

if ($strTcpPort) {
Set-Variable -Name instanceRegPath -Value

"SOFTWARE\Microsoft\MSSQLServer\MSSQLServer" -Scope 1
return $strTcpPort

}

}
else {

#SQL Server 2000 or SQL Server 2005/2008 resides on the same server as
SQL Server 2000

$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL
Server\$pInstanceName\MSSQLServer\SuperSocketNetLib\Tcp"
$strTcpPort=$reg.GetStringValue($HKEY_LOCAL_MACHINE,
$strKeyPath,"TcpPort").svalue

if ($strTcpPort) {
Set-Variable -Name instanceRegPath -Value "SOFTWARE\Microsoft

\Microsoft SQL Server\$pInstanceName\MSSQLServer" -Scope 1
return $strTcpPort

}
}

#SQL Server 2005
for ($i=1; $i -le 50; $i++) {

362

Chapter 15: Building SQL Server Inventory

$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL Server\MSSQL.$i"
$strInstanceName=$reg.GetStringValue($HKEY_LOCAL_MACHINE,

$strKeyPath,"").svalue

if ($strInstanceName -eq $pInstanceName) {
$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL Server\MSSQL.$i

\MSSQLServer\SuperSocketNetLib\tcp\IPAll"
$strTcpPort=$reg.GetStringValue($HKEY_LOCAL_MACHINE,
$strKeyPath,"TcpPort").svalue

Set-Variable -Name instanceRegPath -Value
"SOFTWARE\Microsoft\Microsoft SQL Server\MSSQL.$i\MSSQLServer" -Scope 1

return $strTcpPort
}

}

#SQL Server 2008
$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL

Server\MSSQL10.$pInstanceName\MSSQLServer\SuperSocketNetLib\Tcp\IPAll"
$strTcpPort=$reg.GetStringValue($HKEY_LOCAL_MACHINE,
$strKeyPath,"TcpPort").svalue

if ($strTcpPort) {
Set-Variable -Name instanceRegPath -Value "SOFTWARE\Microsoft\Microsoft

SQL Server\MSSQL10.$pInstanceName\MSSQLServer" -Scope 1
return $strTcpPort

}

return ""
}

This function connects to the HKLM registry hive of the SQL Server host $pHostName
and retrieve the network protocols used by the instance $pInstanceName.
function getServerNetWorkProtocols([String] $pHostName, [String] $pInstanceName)
{

$strProtocols=""

$reg = [WMIClass]"\\$pHostName\root\default:stdRegProv"
$HKEY_LOCAL_MACHINE = 2147483650

$strKeyPath = "$instanceRegPath\SuperSocketNetLib"
#SQL Server 2000
$arrValues=$reg.GetMultiStringValue($HKEY_LOCAL_MACHINE,

$strKeyPath,"ProtocolList").sValue
if ($arrValues) {

$arrValues | foreach -process { $strProtocols=$strProtocols + $_ + ’,’ }
return $strProtocols.Substring(0, $strProtocols.Length-1)

}
#SQL Server 2005 or 2008
else {

$strKeyPath = "$instanceRegPath\SuperSocketNetLib\Tcp"
$intEnabled=$reg.GetDWORDValue($HKEY_LOCAL_MACHINE,

$strKeyPath,"Enabled").uvalue
if ($intEnabled) {

if ($intEnabled -eq 1) { $strProtocols=’tcp,’ }

363

Chapter 15: Building SQL Server Inventory

$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL
Server\MSSQL.$instanceNo\MSSQLServer\SuperSocketNetLib\Np"
$intEnabled=$reg.GetDWORDValue($HKEY_LOCAL_MACHINE,
$strKeyPath,"Enabled").uvalue

if ($intEnabled -eq 1) { $strProtocols=$strProtocols + ’np,’ }

$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL
Server\MSSQL.$instanceNo\MSSQLServer\SuperSocketNetLib\Sm"
$intEnabled=$reg.GetDWORDValue($HKEY_LOCAL_MACHINE,
$strKeyPath,"Enabled").uvalue

if ($intEnabled -eq 1) { $strProtocols=$strProtocols + ’sm,’ }

$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL
Server\MSSQL.$instanceNo\MSSQLServer\SuperSocketNetLib\Via"
$intEnabled=$reg.GetDWORDValue($HKEY_LOCAL_MACHINE,
$strKeyPath,"Enabled").uvalue

if ($intEnabled -eq 1) { $strProtocols=$strProtocols + ’via,’ }

return $strProtocols.Substring(0, $strProtocols.Length-1)
}

}
}

This function connects to the HKLM registry hive of the SQL Server host $pHostName
and retrieve the startup parameters used by the instance $pInstanceName.
function getStartupParameters([String] $pHostName, [String] $pInstanceName)
{

$reg = [WMIClass]"\\$pHostName\root\default:stdRegProv"
$HKEY_LOCAL_MACHINE = 2147483650

$strKeyPath = "$instanceRegPath\Parameters"
$arrValues=$reg.EnumValues($HKEY_LOCAL_MACHINE,$strKeyPath).sNames

#SQL Server 2000
if ($arrValues) {

for ($i=0; $i -lt $arrValues.Length; $i++) {
$strParameters=$strParameters +

$reg.GetStringValue($HKEY_LOCAL_MACHINE,$strKeyPath,$arrValues[$i]).svalue + ";"
}
return $strParameters

}

#SQL Server 2005
for ($i=1; $i -le 50; $i++) {

$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL Server\MSSQL.$i"
$strInstanceName=$reg.GetStringValue($HKEY_LOCAL_MACHINE,
$strKeyPath,"").svalue

if ($strInstanceName -eq $pInstanceName) {
$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL

Server\MSSQL.$i\MSSQLServer\Parameters"
$arrValues=$reg.EnumValues($HKEY_LOCAL_MACHINE,
$strKeyPath).sNames

364

Chapter 15: Building SQL Server Inventory

if ($arrValues) {
for ($i=0; $i -lt $arrValues.Length; $i++) {

$strParameters=$strParameters +
$reg.GetStringValue($HKEY_LOCAL_MACHINE,$strKeyPath,$arrValues[$i]).svalue + ";"

}
return $strParameters

}
}

}

#SQL Server 2008
$strKeyPath = "SOFTWARE\Microsoft\Microsoft SQL

Server\MSSQL10.$pInstanceName\MSSQLServer\Parameters"
$arrValues=$reg.EnumValues($HKEY_LOCAL_MACHINE,$strKeyPath).sNames

if ($arrValues) {
for ($i=0; $i -lt $arrValues.Length; $i++) {

$strParameters=$strParameters +
$reg.GetStringValue($HKEY_LOCAL_MACHINE,$strKeyPath,$arrValues[$i]).svalue + ";"

}
return $strParameters

}
}

##
Main Program
##
[String] $strUpsertSql=""

[String] $instanceRegPath = ’’ # Registry path for the instance

if ($help) {
"Usage: Upsert-Server -serverName <string[]> <<-hostName <string[]>|

-clusterName <string[]>> -status <string[]>"
exit 0

}

if ($instanceName.Length -eq 0) {
"Please enter an instance name."

if ($instanceName -ieq ’mssqlserver’) {
$instanceName=’MSSQLSERVER’

}
exit 1

}

if (($hostName.Length -eq 0) -and ($clusterName.Length -eq 0)) {
"Please enter a host name or a cluster name."
exit 1

}

if (($hostName.Length -gt 0) -and ($clusterName.Length -gt 0)) {
"You only need to enter either a host name or a cluster name."
exit 1

}

365

Chapter 15: Building SQL Server Inventory

if ($status -notmatch ’ ˆ D|Q|P|U|R$’) {
"The status is invalid. Please enter D, Q, P, U or R."
exit 1

}

[String] $sqlNetworkName="" # For standalone host, it is the same as $hostName. For
cluster, it is the same as $clusterName
[String] $windowsNetworkName="" # For standalone host, it is the same as $hostName.
For cluster, it is the WindowsClusterName from the Clusters table.

if ($hostName.Length -gt 0) {
$sqlNetworkName=$hostName
$windowsNetworkName=$hostName

}
else {

$sqlNetworkName=$clusterName

Find the Windows Cluster Name
$strQuerySql="SELECT WindowsClusterName FROM Clusters WHERE

SQLClusterName=’$clusterName’"
$sqlCluster=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer

-Database $inventoryDatabase

$windowsNetworkName=$sqlCluster.WindowsClusterName
}

$tcpPort=(getTcpPort $windowsNetworkName $instanceName)
If tcpPort is not available, the server or the host doesn’t exist.
if ($tcpPort -eq "") {

"Tcp port is not found. Please check the server name and the host/cluster name."

exit 2
}

if ($hostName.Length -gt 0) {
$strUpsertSql = $strUpsertSql + "exec uspUpsertServers ’$instanceName’,

’$status’, ’$hostName’, Null, ’$tcpPort’, "
}
else {

$strUpsertSql = $strUpsertSql + "exec uspUpsertServers ’$instanceName’,
’$status’, Null, ’$clusterName’, ’$tcpPort’, "
}

$strUpsertSql = $strUpsertSql + "’" + (getServerNetWorkProtocols $windowsNetworkName
$instanceName) + "’, "

$strQuerySql = "SELECT CASE SUBSTRING(CONVERT(nvarchar, ServerProperty
(’ProductVersion’)), 1, CHARINDEX(’.’, convert(nvarchar,
ServerProperty(’ProductVersion’)))-1) WHEN ’10’ THEN ’2008’ WHEN ’9’ THEN ’2005’ WHEN
’8’ THEN ’2000’ END"
$strUpsertSql = $strUpsertSql + "’" + (execSQL $sqlNetworkName $instanceName
$strQuerySql $tcpPort) + "’, "

$strQuerySql = "Select ServerProperty(’Edition’)"
$strUpsertSql = $strUpsertSql + "’" + (execSQL $sqlNetworkName $instanceName

366

Chapter 15: Building SQL Server Inventory

$strQuerySql $tcpPort) + "’, "

$strQuerySql = "Select ServerProperty(’ProductVersion’)"
$strUpsertSql = $strUpsertSql + "’" + (execSQL $sqlNetworkName $instanceName
$strQuerySql $tcpPort) + "’, "

$strQuerySql = "Select ServerProperty(’ProductLevel’)"
$strUpsertSql = $strUpsertSql + "’" + (execSQL $sqlNetworkName $instanceName
$strQuerySql $tcpPort) + "’, "

$strParameters =(getStartupParameters $windowsNetworkName $instanceName)
$strUpsertSql = $strUpsertSql + "’" + $strParameters + "’, "

$strQuerySql = "select top 1 filename as Column1 from dbo.sysfiles"
$strUpsertSql = $strUpsertSql + "’" + (execSQL $sqlNetworkName $instanceName
$strQuerySql $tcpPort | Split-Path -parent) + "’, "

$strErrorLog=($strParameters.Split(";") | where {$_.StartsWith("-e")})
$strUpsertSql = $strUpsertSql + "’" + $strErrorLog.Substring(2, $strErrorLog
.Length-2) + "’, "

$strQuerySql = "Select ServerProperty(’Collation’)"
$strUpsertSql = $strUpsertSql + "’" + (execSQL $sqlNetworkName $instanceName
$strQuerySql $tcpPort) + "’, "

$strQuerySql = (getConfigSql "min server memory")
$strUpsertSql = $strUpsertSql + (execSQL $sqlNetworkName $instanceName
$strQuerySql $tcpPort) + ", "

$strQuerySql = (getConfigSql "max server memory")
$strUpsertSql = $strUpsertSql + (execSQL $sqlNetworkName $instanceName
$strQuerySql $tcpPort) + ", "

$strQuerySql = (getConfigSql "awe enabled")
$strUpsertSql = $strUpsertSql + (execSQL $sqlNetworkName $instanceName
$strQuerySql $tcpPort) + ", "

$strQuerySql = (getConfigSql "user connections")
$strUpsertSql = $strUpsertSql + (execSQL $sqlNetworkName $instanceName
$strQuerySql $tcpPort) + " "

$strUpsertSql = $strUpsertSql + ";"

$strUpsertSql

Invoke-Sqlcmd -Query $strUpsertSql -ServerInstance $inventoryServer -Database
$inventoryDatabase

Before running the script, ensure that you can connect to all the servers remotely with the TCP/IP proto-
col and confirm that the advanced options setting is enabled:

1. Advanced options are enabled on the servers:

exec sp_configure ’show advanced options’, 1
reconfigure

367

Chapter 15: Building SQL Server Inventory

2. The TCP/IP protocol should be enabled for every server, and TCP/IP ports on which SQL
servers listen should not be blocked by Windows Firewall. Verify the connectivity remotely.

3. The IPAll option should be enabled for the TCP/IP protocol. This is usually the case in pro-
duction environments.

Now add the SQL Server instances in our environment:

. C:\DBAScripts\dbaLib.ps1
C:\DBAScripts\Upsert-Server -instanceName MSSQLSERVER -hostName POWERPC -status P

C:\DBAScripts\Upsert-Server -instanceName INSTANCE1 -hostName POWERPC -status P

C:\DBAScripts\Upsert-Server -instanceName MSSQLSERVER -hostName DEMOPC -status D

C:\DBAScripts\Upsert-Server -instanceName CH0DE1 -hostName DEMOPC -status D

C:\DBAScripts\Upsert-Server -instanceName MSSQLSERVER -clusterName SQL2008CLUSTER
-status P

C:\DBAScripts\Upsert-Server -instanceName MSSQLSERVER -hostName POWERSERVER3
-status P

Figure 15-7 shows the output from running the script.

As shown in Figure 15-8, all six SQL Server instances have been added to the Servers table and all the
columns related to the server information have been populated.

Databases
The Databases table contains information about all user databases on all SQL Server instances. The
schema of the Databases table is shown in Table 15-5.

Here is a CreateDatabases.ps1 script to create the Databases table:

USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo]
.[Databases]’) AND type in (N’U’))
DROP TABLE [dbo].[Databases]
GO
CREATE TABLE [dbo].[Databases](
[databaseID] int IDENTITY(1000,1) CONSTRAINT PK_databaseID PRIMARY KEY CLUSTERED,
[serverID] int NOT NULL,
[databaseName] [varchar](128) NOT NULL,
[createDate] [smalldatetime] NOT NULL,
[updateDate] [smalldatetime] NOT NULL
)

368

Chapter 15: Building SQL Server Inventory

Figure 15-7

We also need a stored procedure, uspUpsertDatabases, to insert a database record when the database
does not exist in the inventory, or to update a record when the database already exists. This stored
procedure will be called later in the Upsert-Database.ps1 script to manage the Databases table. The
script uspUpsertDatabases.sql shown here is used to create the stored procedure uspUpsertDatabases:

USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N’[dbo].[uspUpsertDatabases]’) AND type in (N’P’, N’PC’))

DROP PROCEDURE [dbo].[uspUpsertDatabases]
GO
CREATE PROCEDURE [DBO].[uspUpsertDatabases]

@serverID [int] ,
@databaseName [varchar] (128)

369

Chapter 15: Building SQL Server Inventory

AS
DECLARE @ERRORCODE [int], @ERRMSG [varchar] (128)

-- If the database already exists in the inventory, then perform an update.
IF EXISTS (SELECT databaseID FROM [dbo].[Databases] WHERE serverID=@serverID and
databaseName=@databaseName)
BEGIN

UPDATE [dbo].[Databases]
SET [updateDate]=getDate()
WHERE serverID=@serverID and databaseName=@databaseName

END
-- If the database does not exist in the inventory, then perform an insertion.
ELSE
BEGIN

INSERT [dbo].[Databases]
(serverID
, databaseName
, createDate
, updateDate
)

VALUES(
@serverID
, @databaseName
, GETDATE()
, GETDATE()
)

END

SET @ERRORCODE = @@ERROR
IF @ERRORCODE <> 0

BEGIN
SET @ERRMSG = ’Upsert failed - ’ + OBJECT_NAME(@@PROCID)
SET @ERRMSG = @ERRMSG + ’ Error Code: ’ +

RTRIM(CONVERT(CHAR, @ERRORCODE))
RAISERROR (@ERRMSG, 16, 1)
RETURN (-1)

END
GO

We now need a script, Upsert-Database.ps1, to collect a list of databases on all our database servers.
This script connects to every server in our inventory, gets the list of user databases, and inserts them into
the inventory. The script is available for download from the Wrox website for this book:

#===
#
NAME: Upsert-Database.ps1
#
AUTHOR: Yan and MAK
DATE : 6/8/2008
#
COMMENT: This script collects all the user databases on all the servers and saves
them into inventory.
#===

370

Chapter 15: Building SQL Server Inventory

##
Initialize parameters
##
param (

[switch]$help
)

##
Main Program
##
[String] $strUpsertSql=""
[String] $strQuerySql=""

if ($help) {
"Usage: Upsert-Database.ps1"
exit 0

}

Get all the servers in our inventory
$strQuerySql="SELECT h.hostName as SQLNetworkName, s.serverID, s.tcpPort
FROM dbo.Servers s
JOIN dbo.Hosts h on h.hostID=s.hostID
UNION
SELECT c.SQLClusterName as SQLNetworkName, s.serverID, s.tcpPort
FROM dbo.Servers s
JOIN dbo.Clusters c on c.clusterID=s.clusterID"

$sqlServers=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer
-Database $inventoryDatabase

Loop through all the servers and get the user databases on each of them.
Foreach ($sqlServer in $sqlServers) {

$strUpsertSql=""

$sqlNetworkName=$sqlServer.SQLNetworkName
$sqlServerID=$sqlServer.serverID
$sqlTcpPort=$sqlServer.tcpPort

On SQL Server 2005 and 2008, query the system view sys.databases.
SQL Server 2000 does not have the system view sys.databases, so the

sysdatabases table needs to be used instead.
$strQuerySql="DECLARE @objid int
SELECT @objid = OBJECT_ID(N’sys.databases’)

IF @objid IS NOT NULL
SELECT [name] FROM sys.databases WHERE [name] NOT IN (’master’, ’model’,

’msdb’, ’tempdb’)
ELSE

SELECT [name] FROM dbo.sysdatabases WHERE [name] NOT IN (’master’,
’model’, ’msdb’,’tempdb’);"

$sqlDatabases=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance
"$sqlNetworkName,$sqlTcpPort" -Database master

371

Chapter 15: Building SQL Server Inventory

if ($sqlDatabases) {
Foreach ($sqlDatabase in $sqlDatabases) {

$strUpsertSql=$strUpsertSql + "exec uspUpsertDatabases " +
$sqlServerID + ", ’" + $sqlDatabase.name + "’;‘n"

}
}

Insert the user databases into the inventory.
if ($strUpsertSql.Length -gt 0) {

$strUpsertSql
Invoke-Sqlcmd -Query $strUpsertSql -ServerInstance $inventoryServer

-Database $inventoryDatabase
}

}

Run the script as follows:

. C:\DBAScripts\dbaLib.ps1
C:\DBAScripts\Upsert-Database.ps1

Figure 15-8

Figure 15-9 shows the output.

All the user databases are picked up by the script. Figure 15-10 shows the databases that have been
inserted after running the script.

To facilitate the creation of the tables and stored procedures, all the SQL scripts have been consolidated
into a script called SQL_Inventory.sql.

372

Chapter 15: Building SQL Server Inventory

Table 15-5: Databases Table Schema

Column DataType Description

databaseID int identity(1000,1) ID of the database

serverID int ID of the server that hosts the database

databaseName varchar(128) Name of the database

createDate smalldatetime Date and time the database record was created

updateDate smalldatetime Date and time the database record was last updated

Figure 15-9

Supplementary Tables
We also need supplementary tables to store support personnel information for the following reasons:

❑ The global DBA group can operate on the ‘‘follow the sun’’ support model. It is important to
clarify the support shift for each region. When the monitoring system discovers a server issue, it
automatically sends out e-mail notifications based on the support shift. However, we also need
to take holidays into consideration. When a region observes a holiday, the system should send
e-mail to all the other regions instead.

373

Chapter 15: Building SQL Server Inventory

Figure 15-10

❑ Application servers use SQL Servers as a backend. In case of a database outage, the BU own-
ers/users need to be contacted and updated with the status of the SQL Server instance. There-
fore, we also need to store BU contacts for each server. If several BUs share databases on a server,
then the BU contacts should be associated with both database and server.

Here is a list of supplementary tables:

❑ ServerBUContacts: This table stores business unit contacts for each server. See Table 15-6.

❑ Regions: This table defines all the regions in the company, such as NA (North America), EU
(Europe), and AS (Asia). See Table 15-7.

❑ RegionSupportShifts: This table defines the time each region starts or stops support for the
globe based on the ‘‘follow the sun’’ model. All the times are GMT. Each region has a dedicated
e-mail group. See Table 15-8.

❑ RegionHolidays: Because we also need to consider that each region has different holidays, this
table stores holidays for each region. See Table 15-9.

For two reasons, we present only the table schema. One, the support model for each company can be
different. For a nonglobal company, there is no need to define regions. We only provide an example
on how to set up the support model. Two, none of the following tables store information from physical
systems, so we do not need to connect to the physical hosts or SQL server instances using Windows
PowerShell. It should be very easy to write stored procedures and scripts to insert data into these tables.

374

Chapter 15: Building SQL Server Inventory

Table 15-6: ServerBUContacts (all user defined

Column DataType Description

serverID int ID of the associated SQL Server

databaseID int If databaseID is null, then the BU contact is for the
entire server. Otherwise, the BU contact is associated
with this database only.

BUContactEmail varchar(256) E-mail address of the BU user. This can be an
individual’s e-mail or an e-mail group.

BUContactPage varchar(256) Page address of the BU user

BUContactPhone varchar(20) Phone number of the BU user

preferredContactMethod varchar(1) Preferred method of contact by BU (e.g., M for e-mail,
P for page, N for phone number)

createDate smalldatetime Date and time the BU contact record was created

updateDate smalldatetime Date and time the BU contact record was last updated

Table 15-7: Regions

Column DataType Description

regionID char(2) Regions that DBAs support (e.g., EU, NA, AS)

regionDescription varchar(256) Description of the region (e.g., Europe, North America, Asia)

Table 15-8: RegionSupportShifts

Column DataType Description

regionID char(2) ID of the region

dbaContactEmailGroup varchar(256) Contact e-mail group of each region
(e.g., lndba, nydba, asdba)

startTime Time (new data type introduced in
SQL Server 2008)

Starting time of the support shift,
based on GMT

endTime Time Ending time of the support shift,
based on GMT

375

Chapter 15: Building SQL Server Inventory

Table 15-9: RegionHolidays

Column DataType Description

regionID char(2) ID of the region

startDate smalldatetime Starting date and time of the holiday, based on GMT

endDate smalldatetime Ending date and time of the holiday, based on GMT

createDate smalldatetime Date and time the holiday record was created

Summary
This chapter demonstrated how to set up a SQL Server inventory database, and add SQL Server stan-
dalone hosts, clusters, servers, and databases in an existing or new environment into the inventory. This
approach will help DBAs in an enterprise environment to track and manage hundreds or even thousands
of SQL Server hosts and instances effectively and efficiently. Subsequent chapters will build administra-
tive and monitoring solutions on top of this inventory to improve the manageability and scalability of
your SQL Server plant.

376

SQL Ser ver Installation

In Chapter 15, we built an inventory consisting of SQL Server instances and their hosts. What should
you do to ensure that every server in our inventory is available to users and applications that use it?
How do you maintain a stable and high-performance database environment? How do you ensure
that in cases of hardware or software failures, you will be able to recover the databases in a timely
fashion to meet the SLA? These are all responsibilities of the database administrator (DBA).

In this chapter, we focus on the first DBA responsibility in the life cycle of a SQL Server instance:
SQL Server installation. Our approach simplifies the massive installation of tens or hundreds of
servers. It will help alleviate the workload in a great deal in enterprise environments, where one or
more servers are built every week.

This chapter covers the following topics:

❑ Installation procedure and template

❑ Standalone installation example

❑ Cluster installation example

Installation Procedure and Template
If you are installing one or more SQL servers per week, it would be worthwhile to consider automat-
ing the process. Automation makes the life of a DBA much easier. It simplifies the installation
process and minimizes human error. If your organization has standards for SQL Server installation,
you can enforce them in the installation scripts.

Installation binaries of SQL Server have evolved drastically. The command-line-based installa-
tion has evolved from SetupSQL.exe with an iss file in SQL Server 2000 to Setup.exe with either
parameters or an ini configuration file in SQL Server 2005 and 2008. Though the ini configuration

Chapter 16: SQL Server Installation

files belong to the traditional way of performing a command-line installation, it is very useful and simple
to install.

This chapter details the process of a command-line installation of SQL Server 2008 using a cus-
tomized SQL Server template file and Windows PowerShell. Please note that the setup parameters
defined for SQL Server 2005 are different. If you are using SQL Server 2005, you will need to change the
template file. The installation process of SQL Server 2000 varies even more, and it involves the creation
of iss files, thus more changes are needed. The solution presented in this chapter is tailored for SQL
Server 2008.

SQL Server 2008 comes in many flavors:

❑ Enterprise

❑ Standard

❑ Developer

❑ Workgroup

❑ Web

❑ Compact

❑ Express

SQL Server features vary according to edition. We focus on the first three editions only because the
Workgroup, Web, and Express editions are meant for limited use, and the Compact edition is for mobile
devices.

SQL Server includes many components that implement features other than RDBMS functionality. These
components can be categorized as server components or client tools. The server components include the
following:

❑ Database Engine Services

❑ Analysis Services

❑ Reporting Services

❑ Integration Services

The client tools include the following:

❑ SQL Server Management Studio

❑ SQL Server Configuration Manager

❑ SQL Server Profiler

❑ Database Engine Tuning Advisor

❑ Business Intelligence Development Studio

❑ Connectivity Components

378

Chapter 16: SQL Server Installation

If you are trying to install only the client tools of SQL Server, there is no need for a template file because
the installation is straightforward and just needs a setup parameter. The command-line installation in
this chapter deals with installation of Database Engine–related components and client tools. You can
choose to install two features with the Database Engine:

❑ Replication

❑ Full-Text Search

To give you a visual of the components, Figure 16-1 shows the list of features included if you install SQL
Server 2008 with the Installation Wizard.

Figure 16-1

Before starting the installation, you need to put the installation binaries on a file server. Assume that the
SQL Server installation binaries are copied to a shared folder SQL2008Install on a file server DEMOPC,
and name the SQL Server installation binary directories as follows:

\\DEMOPC\SQL2008Install\ENT\
\\DEMOPC\SQL2008Install\STD\
\\DEMOPC\SQL2008Install\DEV\

DEV stands for developer edition; STD stands for Standard edition; and ENT stands for Enterprise
edition.

379

Chapter 16: SQL Server Installation

Because you need to keep track of SQL Server instances in your environment, before installing SQL
Server on a host or a Windows cluster, it is also assumed that the host or cluster nodes have been added
to your inventory, as demonstrated in Chapter 15.

For example, before installing a new instance on a standalone host POWERPC, you need to run the
Upsert-Host.ps1 script as follows:

. C:\DBAScripts\dbaLib.ps1
Add a DBA inventory host.
C:\DBAScripts\Upsert-Host.ps1 -hostName POWERPC -region NA -location CH
-primaryBU DBA -description ‘DBA Inventory Server’

The output is shown in Figure 16-2.

Figure 16-2

Before installing a new failover cluster instance, SQL2008CLUSTER, on a two-node Windows MSCS
cluster PowerCluster, you need to run the Upsert-Host.ps1 script to insert the individual nodes, NODE1
and NODE2; the Upsert-Cluster.ps1 script to insert the cluster; and the Upsert-ClusterNode.ps1
script to associate the nodes with the cluster:

. C:\DBAScripts\dbaLib.ps1
Add node 1 of a cluster for Investment Banking Division (IBD).
C:\DBAScripts\Upsert-Host.ps1 -hostName NODE1 -region NA -location CH
-primaryBU IBD -description ‘IBD database cluster node 1’

Add node 2 of a cluster for Investment Banking Division (IBD).
C:\DBAScripts\Upsert-Host.ps1 -hostName NODE2 -region NA -location CH
-primaryBU IBD -description ‘IBD database cluster node 2’

C:\DBAScripts\Upsert-Cluster.ps1 -SQLClusterName SQL2008CLUSTER
-WindowsClusterName PowerCluster -numberOfNodes 2 -clusteringMethod MSCS

C:\DBAScripts\Upsert-ClusterNode.ps1 –SQLClusterName SQL2008CLUSTER –nodeName NODE1

C:\DBAScripts\Upsert-ClusterNode.ps1 –SQLClusterName SQL2008CLUSTER –nodeName NODE2

The output is shown in Figure 16-3.

380

Chapter 16: SQL Server Installation

Figure 16-3

SQL Server Installation Template
It would be quite tedious and error-prone to put together all the setup parameters, so we have created a
template file. The bare form of the template file is shown here:

SQL Server installation type - STANDALONE or CLUSTER
SQLINSTALLTYPE=

Name of the new SQL Server instance. MSSQLSERVER for default instance.
INSTANCENAME=
Status of the SQL Server instance.
Possible values include D for Development, Q for QA, P for Production,
U for UAT and R for Distaster Recovery.
STATUS=

Location of SQL Server installation binaries
SQLDISTSVR=

SQL Server edition ENT, STD, DEV
SQLEDITION=

SQL SERVER Version - 2008, 2005 or 2000. Our script only supports 2008.
SQLVERSION=

SQL Server Service pack – blank (for RTM), SP1, SP2. Our script only supports RTM.
SQLSERVICEPACK=

SQL Server Features - SQL, SQLEngine, Replication, FullText, AS, RS,
IS, TOOLS, BIDS, BOL
FEATURES=

381

Chapter 16: SQL Server Installation

SQL Server Security Mode. SQL for Mixed Mode. Blank for Windows Authentication Mode.
SECURITYMODE=

User or group that will be provisioned with the sysadmin permissions.
Make sure to include the account with which you will be running
Perform-PostSetupTasks.ps1
so the post-setup tasks can be performed successfully.
SQLSYSADMINACCOUNTS=

SQL Server service account
SQLSVCACCOUNT=

SQL Server Agent Account
AGTSVCACCOUNT=

Integrated Services Account
ISSVCACCOUNT=

SQL Server binary directory
INSTANCEDIR=

SQL Server shared component directory
INSTALLSHAREDDIR=

SQL Server database files root directory
INSTALLSQLDATADIR=

User database data directory
SQLUSERDBDIR=

User database log directory
SQLUSERDBLOGDIR=

tempdb data directory
SQLTEMPDBDIR=

tempdb log directory
SQLTEMPDBLOGDIR=

Backup directory
SQLBACKUPDIR=

SQL Collation
SQLCOLLATION=

Static TCP port number to be used
TCPPORT=

Specify 0 to disable or 1 to enable the error reporting
ERRORREPORTING=

###
STANDALONE PARAMETERS
###

382

Chapter 16: SQL Server Installation

Name of the standalone host on which the instance is being installed.
For cluster, this should be blank.
HOSTNAME=

Specify 0 to disable or 1 to enable the Named Pipes protocol
NPENABLED=

###
CLUSTER PARAMETERS
###
Specify the domain group that contains the SQL Server service account
and will be used to control access to SQL Server objects, and other

cluster resources.
SQLDOMAINGROUP=

Specify the domain group that contains the SQL Server Agent service account.
AGTDOMAINGROUP=

Specifies the network name for the SQL Server cluster.
FAILOVERCLUSTERNETWORKNAME=

Specify the cluster group that will contain the SQL Server resources.
FAILOVERCLUSTERGROUP=

Names of the shared disk resources that will be used to store SQL Server data.
FAILOVERCLUSTERDISKS=

Network IP address for the new failover instance in the format of
"IP Protocl;IP Address;Public Network Name;Subnet Mask"
FAILOVERCLUSTERIPADDRESSES=

You’ll need an installation script that reads the template file and parses the parameters to generate a
Setup.exe command. Then the script invokes the command to install a new instance. The complete
script, Install-Instance.ps1, follows here, and is available for download from the Wrox website for
this book at www.wrox.com:

#==
#
NAME: Install-Instance.ps1
DATE : 10/13/2008
AUTHOR: Yan & MAK
COMMENT: This script reads the template file, parses the parameters to generate
a Setup.exe command,
and then invokes the command to install a new instance.
Run this script on the standalone host or the active node of the cluster
that you want to install the new SQL Server instance on.
#
In the cluster case, this script installs a single-node cluster
and outputs the Setup.exe command you can run on each node you want to
add to the cluster.
#
Example:
Install-Instance.ps1 -filename C:\sqltemplate.txt -sapwd
xxxxxxxx -sqlsvcpwd xxxxxxxx -agtsvcpwd xxxxxxxx
#==

383

Chapter 16: SQL Server Installation

##
Initialize parameters
##
param
(

[switch] $help,
[String] $filename={},
[String] $sapwd={}, # sa password
[String] $sqlsvcpwd={}, # SQL Server service account password
[String] $agtsvcpwd={} # SQL Server Agent service account password

)

##
Function to install standalone instance
##
Function InstallStandalone()
{

[String] $installString=""

Construct the Setup.exe command from the parameters in the template file.
$installString=$template.SQLDISTSVR + $template.SQLEDITION

+ "\Setup.exe /q /ACTION=Install "
$installString=$installString + " /FEATURES=" +$template.FEATURES
$installString=$installString + " /INSTANCENAME=" + $instanceName

Set the sa password only when SECURITYMODE is "SQL"
if (($template.SECURITYMODE.Length -gt 0) -and ($sapwd.Length -gt 0)) {

$installString=$installString + " /SECURITYMODE=" +
$template.SECURITYMODE

$installString=$installString + " /SAPWD=" + $sapwd
}

$installString=$installString + " /SQLSYSADMINACCOUNTS=" +
$template.SQLSYSADMINACCOUNTS

$installString=$installString + " /SQLSVCACCOUNT=" +
$template.SQLSVCACCOUNT

Set the SQL Server service account password only when
SQLSVCPASSWORD is not blank.

For built-in accounts, such as LOCALSYSTEM, no password is needed.
if ($sqlsvcpwd.Length -gt 0) {

$installString=$installString + " /SQLSVCPASSWORD=" + $sqlsvcpwd
}

$installString=$installString + " /AGTSVCACCOUNT=" +
$template.AGTSVCACCOUNT

Set the SQL Server Agent service account password only when
AGTSVCPASSWORD is not blank.

For built-in accounts, such as LOCALSYSTEM, no password is needed.
if ($agtsvcpwd.Length -gt 0) {

$installString=$installString + " /AGTSVCPASSWORD=" + $agtsvcpwd
}

Set the account for Integration Services.
if ($template.ISSVCACCOUNT.Length -gt 0) {

384

Chapter 16: SQL Server Installation

$installString=$installString + " /ISSVCACCOUNT=" +
$template.ISSVCACCOUNT

}

Set the directories for SQL Server binary, shared components, database
files and backups

$installString=$installString + " /INSTANCEDIR=" + $template.INSTANCEDIR
$installString=$installString + " /INSTALLSHAREDDIR=" +

$template.INSTALLSHAREDDIR
$installString=$installString + " /INSTALLSQLDATADIR=" +

$template.INSTALLSQLDATADIR

if ($template.SQLUSERDBDIR.Length -gt 0) {
$installString=$installString + " /SQLUSERDBDIR=" +

$template.SQLUSERDBDIR
}

if ($template.SQLUSERDBLOGDIR.Length -gt 0) {
$installString=$installString + " /SQLUSERDBLOGDIR=" +

$template.SQLUSERDBLOGDIR
}

if ($template.SQLTEMPDBDIR.Length -gt 0) {
$installString=$installString + " /SQLTEMPDBDIR=" +

$template.SQLTEMPDBDIR
}

if ($template.SQLTEMPDBLOGDIR.Length -gt 0) {
$installString=$installString + " /SQLTEMPDBLOGDIR=" +

$template.SQLTEMPDBLOGDIR
}

if ($template.SQLBACKUPDIR.Length -gt 0) {
$installString=$installString + " /SQLBACKUPDIR=" +

$template.SQLBACKUPDIR
}

$installString=$installString + " /SQLCOLLATION=" + $template.SQLCOLLATION
$installString=$installString + " /ERRORREPORTING=" +

$template.ERRORREPORTING

Enable TCP/IP protocol by default
$installString=$installString + " /TCPENABLED=1"

Standalone specific parameter
$installString=$installString + " /NPENABLED=" + $template.NPENABLED

"Installing SQL Server instance " + $instanceName + " ..."
$installString + "`n"

Invoke the Setup.exe command on the local computer
Invoke-Expression $installString

}

385

Chapter 16: SQL Server Installation

##
Function to install failover cluster instance
##
Function InstallCluster()
{

[String] $installString=""

Construct the Setup.exe command from the parameters in the template file.
$installString=$template.SQLDISTSVR + $template.SQLEDITION +

"\Setup.exe /q /ACTION=InstallFailoverCluster "
$installString=$installString + " /FEATURES=" +$template.FEATURES
$installString=$installString + " /INSTANCENAME=" + $instanceName

Set the sa password only when SECURITYMODE is "SQL"
if (($template.SECURITYMODE.Length -gt 0) -and ($sapwd.Length -gt 0)) {

$installString=$installString + " /SECURITYMODE=" +
$template.SECURITYMODE

$installString=$installString + " /SAPWD=" + $sapwd
}

$installString=$installString + " /SQLSYSADMINACCOUNTS=" +
$template.SQLSYSADMINACCOUNTS

$installString=$installString + " /SQLSVCACCOUNT=" +
$template.SQLSVCACCOUNT

Set the SQL Server service account password only when SQLSVCPASSWORD
is not blank.

For built-in accounts, such as LOCALSYSTEM, no password is needed.
if ($sqlsvcpwd.Length -gt 0) {

$installString=$installString + " /SQLSVCPASSWORD=" + $sqlsvcpwd
}

$installString=$installString + " /AGTSVCACCOUNT=" +
$template.AGTSVCACCOUNT

Set the SQL Server Agent service account password only when AGTSVCPASSWORD
is not blank.

For built-in accounts, such as LOCALSYSTEM, no password is needed.
if ($agtsvcpwd.Length -gt 0) {

$installString=$installString + " /AGTSVCPASSWORD=" + $agtsvcpwd
}

Set the account for Integration Services.
if ($template.ISSVCACCOUNT.Length -gt 0) {

$installString=$installString + " /ISSVCACCOUNT=" +
$template.ISSVCACCOUNT

}

Set the directories for SQL Server binary, shared components, database
files and backups

$installString=$installString + " /INSTANCEDIR=" + $template.INSTANCEDIR
$installString=$installString + " /INSTALLSHAREDDIR=" +

$template.INSTALLSHAREDDIR
$installString=$installString + " /INSTALLSQLDATADIR=" +

$template.INSTALLSQLDATADIR

386

Chapter 16: SQL Server Installation

if ($template.SQLUSERDBDIR.Length -gt 0) {
$installString=$installString + " /SQLUSERDBDIR=" +

$template.SQLUSERDBDIR
}

if ($template.SQLUSERDBLOGDIR.Length -gt 0) {
$installString=$installString + " /SQLUSERDBLOGDIR=" +

$template.SQLUSERDBLOGDIR
}

if ($template.SQLTEMPDBDIR.Length -gt 0) {
$installString=$installString + " /SQLTEMPDBDIR=" +

$template.SQLTEMPDBDIR
}

if ($template.SQLTEMPDBLOGDIR.Length -gt 0) {
$installString=$installString + " /SQLTEMPDBLOGDIR=" +

$template.SQLTEMPDBLOGDIR
}

if ($template.SQLBACKUPDIR.Length -gt 0) {
$installString=$installString + " /SQLBACKUPDIR=" +

$template.SQLBACKUPDIR
}

$installString=$installString + " /SQLCOLLATION=" + $template.SQLCOLLATION
$installString=$installString + " /ERRORREPORTING=" +

$template.ERRORREPORTING

Cluster specific parameters
$installString=$installString + " /SQLDOMAINGROUP=" +

$template.SQLDOMAINGROUP
$installString=$installString + " /AGTDOMAINGROUP=" +

$template.AGTDOMAINGROUP
$installString=$installString + " /FAILOVERCLUSTERNETWORKNAME=" +

$template.FAILOVERCLUSTERNETWORKNAME
$installString=$installString + " /FAILOVERCLUSTERGROUP=" +

$template.FAILOVERCLUSTERGROUP
$installString=$installString + " /FAILOVERCLUSTERDISKS=" +

$template.FAILOVERCLUSTERDISKS
$installString=$installString + " /FAILOVERCLUSTERIPADDRESSES=" +

$template.FAILOVERCLUSTERIPADDRESSES

"Installing a single-node SQL Server failover cluster instance " +
$instanceName

"The SQL Server cluster group is " + $template.FAILOVERCLUSTERNETWORKNAME
+ " ..."

$installString + "`n"

Invoke the Setup.exe command on the local computer
Invoke-Expression $installString

Create the Setup.exe command you can run on each node you want to
add to the cluster.

387

Chapter 16: SQL Server Installation

"After confirm that the single-node cluster was installed successfully,
please run the following Setup command on each node you want to add to the cluster.`n"

$installString=""
$installString=$template.SQLDISTSVR + $template.SQLEDITION +

"\Setup.exe /q /ACTION=AddNode "
$installString=$installString + " /INSTANCENAME=" + $instanceName

$installString=$installString + " /SQLSVCACCOUNT=" +
$template.SQLSVCACCOUNT

if ($sqlsvcpwd.Length -gt 0) {
$installString=$installString + " /SQLSVCPASSWORD=" + $sqlsvcpwd

}

$installString=$installString + " /AGTSVCACCOUNT=" +
$template.AGTSVCACCOUNT

if ($agtsvcpwd.Length -gt 0) {
$installString=$installString + " /AGTSVCPASSWORD=" + $agtsvcpwd

}

$installString + "`n"
}

##
Main Program
##

if ($help) {
"Usage: Install-Instance.ps1 -filename <string[]> -sapwd [<string[]>]

-sqlsvcpwd [<string[]>] -agtsvcpwd [<string[]>]"
exit 0

}

if ($filename.Length -eq 0) {
"Please enter a template file name."
exit 1

}

Read the template file and parse the parameters
$file=Get-Content $filename
$file | Foreach-Object {$template = @{}}
{$template[$_.split(’=’)[0]] = $_.split(’=’)[1]}

[String] $instanceName=$template.INSTANCENAME

if ($template.SQLINSTALLTYPE -eq "STANDALONE")
{

Invoke the function to install a standalone instance
InstallStandalone

}
elseif ($template.SQLINSTALLTYPE -eq "CLUSTER")
{

Invoke the function to install a failover cluster instance
InstallCluster

388

Chapter 16: SQL Server Installation

}
else {

"Invalid installation type!"
exit 2

}
}

Standalone Installation Example
In this example, we install a named instance, INSTANCE1, on POWERPC using the template file and
the installation script. We take the bare-form template file and fill in the parameter values for the new
standalone SQL Server instance and save it under the C:\DBAScripts directory. The template file,
StandaloneTemplate.txt, is shown here:

SQL Server installation type - STANDALONE or CLUSTER
SQLINSTALLTYPE=STANDALONE

Name of the new SQL Server instance. MSSQLSERVER for default instance.
INSTANCENAME=INSTANCE1

Status of the SQL Server instance.
Possible values include D for Development, Q for QA, P for Production, U for
UAT and R for Distaster Recovery.
STATUS=P

Location of SQL Server installation binaries
SQLDISTSVR=\\DEMOPC\SQL2008Install\

SQL Server edition ENT, STD, DEV
SQLEDITION=DEV

SQL SERVER Version - 2008, 2005 or 2000. Our script only supports 2008.
SQLVERSION=2008

SQL Server Service pack – blank (for RTM), SP1, SP2. Our script only supports RTM.
SQLSERVICEPACK=

SQL Server Features - SQL, SQLEngine, Replication, FullText, AS, RS, IS,
TOOLS, BIDS, BOL
FEATURES=SQL,IS,Tools,BOL,BIDS

SQL Server Security Mode. SQL for Mixed Mode. Blank for Windows Authentication Mode.
SECURITYMODE=SQL

User or group that will be provisioned with the sysadmin permissions.
Make sure to include the account with which you will be running
Perform-PostSetupTasks.ps1
so the post-setup tasks can be performed successfully.
SQLSYSADMINACCOUNTS="PowerDomain\SqlService" "PowerDomain\PowerUser"

SQL Server service account
SQLSVCACCOUNT="PowerDomain\SqlService"

389

Chapter 16: SQL Server Installation

SQL Server Agent Account
AGTSVCACCOUNT="PowerDomain\SqlService"

Integrated Services Account
ISSVCACCOUNT="NT Authority\Network Service"

SQL Server binary directory
INSTANCEDIR="C:\Program Files\Microsoft SQL Server"

SQL Server shared component directory
INSTALLSHAREDDIR="C:\Program Files\Microsoft SQL Server"

SQL Server database files root directory
INSTALLSQLDATADIR="D:\SQLServer"

User database data directory
SQLUSERDBDIR=

User database log directory
SQLUSERDBLOGDIR=

tempdb data directory
SQLTEMPDBDIR=

tempdb log directory
SQLTEMPDBLOGDIR=

Backup directory
SQLBACKUPDIR=

SQL Collation
SQLCOLLATION=SQL_Latin1_General_CP1_CI_AS

Static TCP port number to be used
TCPPORT=7001

Specify 0 to disable or 1 to enable the error reporting
ERRORREPORTING=1

###
STANDALONE PARAMETERS
###
Name of the standalone host on which the instance is being installed.
For cluster, this should be blank.
HOSTNAME=POWERPC

Specify 0 to disable or 1 to enable the Named Pipes protocol
NPENABLED=1

###
CLUSTER PARAMETERS
###
Specify the domain group that contains the SQL Server service account
and will be used to control access to SQL Server objects, and other
cluster resources.

390

Chapter 16: SQL Server Installation

SQLDOMAINGROUP=

Specify the domain group that contains the SQL Server Agent service account.
AGTDOMAINGROUP=

Specifies the network name for the SQL Server cluster.
FAILOVERCLUSTERNETWORKNAME=

Specify the cluster group that will contain the SQL Server resources.
FAILOVERCLUSTERGROUP=

Names of the shared disk resources that will be used to store SQL Server data.
FAILOVERCLUSTERDISKS=

Network IP address for the new failover instance in the format of
"IP Protocl;IP Address;Public Network Name;Subnet Mask"
FAILOVERCLUSTERIPADDRESSES=

After going through the template file and filling in the values, you can run the Install-Instance.ps1
script as follows. Please run the script under a local administrator account. The sa password is passed to
the script and will be set to Pa$$w0rd. The password for the service account PowerDomain\SqlService,
which will be used for SQL Server and SQL Server Agent, is P@ssw0rd:

C:\DBAScripts\Install-Instance.ps1 C:\DBAScripts\StandaloneTemplate.txt -sapwd
‘Pa$$w0rd’ -sqlsvcpwd ‘P@ssw0rd’ -agtsvcpwd ‘P@ssw0rd’

As shown in Figure 16-4, the installation script generates the setup command based on the template file,
and installs the new instance, INSTANCE1, on the computer POWERPC.

Figure 16-4

You can check the logs under C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log to
ensure that the instance has been installed successfully.

After confirming the success of the installation, you can continue to perform the post-setup tasks:

1. Change the TCP port to a static port as specified in the template file.

2. Add the server into the inventory.

391

Chapter 16: SQL Server Installation

The Perform-PostSetupTasks.ps1 script, which follows, is available for download from the Wrox web-
site for this book:

===
#
NAME: Perform-PostSetupTasks.ps1
DATE : 10/13/2008
AUTHOR : Yan & MAK
#
COMMENT: This script performs post-setup tasks, which includes
1. Change the TCP port to a static port as specified in the template file
2. Add the server into the inventory.
#
Run this script on the SQL Server standalone host or the active node
of the SQL Server cluster.
#
Example:
Perform-PostSetupTasks.ps1 -filename <string[]>
===

##
Initialize parameters
##
param
(

[switch] $help,
[String] $filename={} # Template file name

)

##
Post-setup tasks
##

if ($help) {
"Usage: Perform-PostSetupTasks.ps1 -filename <string[]>"
exit 0

}

if ($filename.Length -eq 0) {
"Please enter a template file name."
exit 1

}

Read the template file and parse the parameters.
$file=Get-Content $filename
$file | Foreach-Object {$template = @{}} {$template[$_.split(’=’)[0]] =
$_.split(’=’)[1]}

[String] $instanceName=$template.INSTANCENAME
[String] $sqlNetworkName=""
[String] $tcpport=$template.TCPPORT

Check whether the SQL Server 2008 instance has been installed successfully.

392

Chapter 16: SQL Server Installation

$sqlservice=Get-WmiObject -namespace root\Microsoft\SqlServer\ComputerManagement10
-class SqlService -filter "DisplayName=’SQL Server ($instanceName)’"

If the SQL Server instance has been installed successfully
if ($sqlservice)
{

Standalone instance
if ($template.SQLINSTALLTYPE -eq "STANDALONE") {

Get rid of unnecessary double quotes
$sqlNetworkName=$template.HOSTNAME.Replace("`"", "")

Set TCP port as specified in the template file
"Setting TCP port to " + $tcpport + " ..."
Disable dynamic ports
$dynamicPorts=Get-WmiObject -namespace root\Microsoft\SqlServer\

ComputerManagement10 -class ServerNetworkProtocolProperty `
-filter "PropertyName=’TcpDynamicPorts’ and IPAddressName=’IPAll’

and InstanceName=’$instanceName’"
$dynamicPorts.SetStringValue("") | Out-Null
Set static port
$staticPort=Get-WmiObject -namespace root\Microsoft\SqlServer\

ComputerManagement10 -class ServerNetworkProtocolProperty `
-filter "PropertyName=’TcpPort’ and

IPAddressName=’IPAll’ and InstanceName=’$instanceName’"
$staticPort.SetStringValue($tcpport) | Out-Null

Restart server for the new port number to take effect ...
$sqlservice.StopService() | Out-Null
$sqlservice.StartService() | Out-Null

"Waiting for the SQL Server service to be completely recovered ..."
Start-Sleep 60

Execute Upsert-Server to insert the new instance into the inventory
"Adding new instance to the inventory ..."
Invoke-Sqlcmd -Query "exec sp_configure ‘show advanced options’, 1;

RECONFIGURE" `
-ServerInstance "$sqlNetworkName,$tcpport" -Database master

[String] $upsertString="C:\DBAScripts\Upsert-Server -instanceName "
+ $instanceName `

+ " -hostName " + $sqlNetworkName + " -status " + $template.STATUS

$upsertString + "`n"

Invoke-Expression $upsertString
}

#Failover cluster instance
elseif ($template.SQLINSTALLTYPE -eq "CLUSTER") {

Get rid of unnecessary double quotes
$sqlNetworkName=$template.FAILOVERCLUSTERNETWORKNAME

.Replace("`"", "")

393

Chapter 16: SQL Server Installation

Set TCP port as specified in the template file
"Setting TCP port to " + $tcpport + " ..."
Disable dynamic ports
$dynamicPorts=Get-WmiObject -namespace root\Microsoft\SqlServer\

ComputerManagement10 -class ServerNetworkProtocolProperty `
-filter "PropertyName=’TcpDynamicPorts’ and IPAddressName=’IPAll’ and

InstanceName=’$instanceName’"
$dynamicPorts.SetStringValue("") | Out-Null
Set static port
$staticPort=Get-WmiObject -namespace root\Microsoft\SqlServer\

ComputerManagement10 -class ServerNetworkProtocolProperty `
-filter "PropertyName=’TcpPort’ and IPAddressName=’IPAll’ and

InstanceName=’$instanceName’"
$staticPort.SetStringValue($tcpport) | Out-Null

Restart server for the new port number to take effect ...
$sqlservice.StopService() | Out-Null
$sqlservice.StartService() | Out-Null

"Waiting for the SQL Server cluster group to be completely
recovered ..."

Start-Sleep 300

Execute Upsert-Server to insert the new instance into the
inventory

"Adding new instance to the inventory ..."
Invoke-Sqlcmd -Query "exec sp_configure ‘show advanced options’, 1;

RECONFIGURE" `
-ServerInstance "$sqlNetworkName,$tcpport" -Database master

[String] $upsertString="C:\DBAScripts\Upsert-Server
-instanceName " + $instanceName `

+ " -clusterName " + $sqlNetworkName + " -status " +
$template.STATUS

$upsertString + "`n"

Invoke-Expression $upsertString
}
else {

"Invalid installation type!"
exit 2

}
}
If the SQL Server instance does NOT exist
else {

"Cannot detect the SQL Server instance $instanceName. Please make sure
the instance is running."

exit 3
}}

Run the Perform-PostSetupTasks.ps1 script to configure the newly created instance, INSTANCE1, on
PowerPC, and insert it into the inventory. Before running the script, make sure the instance is running.
Please run the script under an account that is a local administrator and a member of the sysadmin server
role in the new instance:

394

Chapter 16: SQL Server Installation

. C:\DBAScripts\dbaLib.ps1
C:\DBAScripts\Perform-PostSetupTasks.ps1 C:\DBAScripts\StandaloneTemplate.txt

As shown in Figure 16-5, the script sets the TCP port to the static port 7001 as specified in the
template file.

Figure 16-5

Next, it restarts the SQL Server instance INSTANCE1 in order for the new port number to take effect.
Then it adds the new server into the inventory.

Cluster Installation Example
You can follow the same procedure to create a SQL Server failover cluster instance. This example installs
a default failover cluster instance on a SQL Server cluster group SQL2008CLUSTER on the Windows cluster
PowerCluster. To begin, fill in the parameter values in the template file ClusterTemplate.txt and save
it under the C:\DBAScripts directory:

SQL Server installation type - STANDALONE or CLUSTER
SQLINSTALLTYPE=CLUSTER

Name of the new SQL Server instance. MSSQLSERVER for default instance.
INSTANCENAME=MSSQLSERVER

Status of the SQL Server instance.
Possible values include D for Development, Q for QA, P for Production, U
for UAT and R for Distaster Recovery.
STATUS=P

Location of SQL Server installation binaries
SQLDISTSVR=\\DEMOPC\SQL2008Install\

SQL Server edition ENT, STD, DEV
SQLEDITION=DEV

SQL SERVER Version - 2008, 2005 or 2000. Our script only supports 2008.
SQLVERSION=2008

SQL Server Service pack – blank (for RTM), SP1, SP2. Our script only supports RTM.
SQLSERVICEPACK=

395

Chapter 16: SQL Server Installation

SQL Server Features - SQL, SQLEngine, Replication, FullText, AS,
RS, IS, TOOLS, BIDS, BOL
FEATURES=SQL,Tools,BOL

SQL Server Security Mode. SQL for Mixed Mode. Blank for Windows Authentication Mode.
SECURITYMODE=

User or group that will be provisioned with the sysadmin permissions.
Make sure to include the account with which you will be running
Perform-PostSetupTasks.ps1
so the post-setup tasks can be performed successfully.
SQLSYSADMINACCOUNTS="PowerDomain\SqlService" "PowerDomain\PowerUser"

SQL Server service account
SQLSVCACCOUNT="PowerDomain\SqlService"

SQL Server Agent Account
AGTSVCACCOUNT="PowerDomain\SqlService"

Integrated Services Account
ISSVCACCOUNT=

SQL Server binary directory
INSTANCEDIR="C:\Program Files\Microsoft SQL Server"

SQL Server shared component directory
INSTALLSHAREDDIR="C:\Program Files\Microsoft SQL Server"

SQL Server database files root directory
INSTALLSQLDATADIR="D:\SQLServer"

User database data directory
SQLUSERDBDIR=

User database log directory
SQLUSERDBLOGDIR="L:\SQLServer\MSSQL10.MSSQLSERVER\MSSQL\Log"

tempdb data directory
SQLTEMPDBDIR=

tempdb log directory
SQLTEMPDBLOGDIR="L:\SQLServer\MSSQL10.MSSQLSERVER\MSSQL\Log"

Backup directory
SQLBACKUPDIR=

SQL Collation
SQLCOLLATION=SQL_Latin1_General_CP1_CI_AS

Static TCP port number to be used
TCPPORT=7001

396

Chapter 16: SQL Server Installation

Specify 0 to disable or 1 to enable the error reporting
ERRORREPORTING=1

###
STANDALONE PARAMETERS
###
Name of the standalone host on which the instance is being installed.
For cluster, this should be blank.
HOSTNAME=

Specify 0 to disable or 1 to enable the Named Pipes protocol
NPENABLED=

###
CLUSTER PARAMETERS
###
Specify the domain group that contains the SQL Server service account
and will be used to control access to SQL Server objects, and other
cluster resources.
SQLDOMAINGROUP="PowerDomain\SQLAdmins"

Specify the domain group that contains the SQL Server Agent service account.
AGTDOMAINGROUP="PowerDomain\SQLAdmins"

Specifies the network name for the SQL Server cluster.
FAILOVERCLUSTERNETWORKNAME="SQL2008CLUSTER"

Specify the cluster group that will contain the SQL Server resources.
FAILOVERCLUSTERGROUP="SQL Server 2008 Group"

Names of the shared disk resources that will be used to store SQL Server data.
FAILOVERCLUSTERDISKS="SQL Data" "SQL Log"

Network IP address for the new failover instance in the format of
"IP Protocl;IP Address;Public Network Name;Subnet Mask"
FAILOVERCLUSTERIPADDRESSES="IPv4;192.168.1.12;Public;255.255.255.0"

On the active node of the Windows cluster PowerCluster, run the Install-Instance.ps1script to install a
single-node failover cluster instance MSSQLSERVER on a SQL Server cluster group SQL2008CLUSTER.
Please run the script under a local administrator account. The password for the service account,
PowerDomain\SqlService, that will be used for SQL Server and SQL Server Agent, is P@ssw0rd. Because
you are configuring the new instance to use Windows Authentication mode in the template file, no sa
password is passed:

C:\DBAScripts\Install-Instance.ps1 C:\DBAScripts\ClusterTemplate.txt -sqlsvcpwd
‘P@ssw0rd’ -agtsvcpwd ‘P@ssw0rd’

As shown in Figure 16-6, the script generates the Setup.exe command to install a single-node failover
cluster instance MSSQLSERVER on a SQL Server cluster group SQL2008CLUSTER.

397

Chapter 16: SQL Server Installation

Figure 16-6

You can check the logs under C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log to
ensure that the instance has been installed successfully. The script also prints out the Setup.exe com-
mand, which can be used to add additional nodes to the cluster SQL2008CLUSTER. After confirming
the success of the installation, you can run the command as a local administrator on other nodes of the
Windows cluster PowerCluster, as shown in Figure 16-7. Please note that no failovers are necessary.

Figure 16-7

After confirming that the failover cluster instance has been installed and configured successfully on all
the nodes, you can continue to perform the post-setup tasks on the active node. Before running the script,
please ensure that the failover cluster instance is running. Run the script under an account that is a local
administrator and a member of the sysadmin server role in the new instance:

. C:\DBAScripts\dbaLib.ps1
C:\DBAScripts\Perform-PostSetupTasks.ps1 C:\DBAScripts\ClusterTemplate.txt

398

Chapter 16: SQL Server Installation

As shown in Figure 16-8, the script sets the TCP port to the static port 7001 as specified in the template
file. Next, it restarts the SQL Server failover cluster instance in order for the new port number to take
effect. Please note that the service is restarted before an automatic failover happens. Then the script adds
the new instance into the inventory.

Figure 16-8

Summary
This chapter presented a solution for a bulk SQL Server installation with a template file and two instal-
lation scripts. By simply adding values in the template file, you can run the installation scripts to install
and configure standalone or cluster failover SQL Server instances. Subsequent chapters will continue to
focus on automation. You will see that the combination of Windows PowerShell and SQL Server 2008
can take you a long way.

399

Collecting SQL Ser ver
Performance and Host

Performance Data

The previous two chapters covered PowerShell and T-SQL procedures related to SQL Server inven-
tory and database administration and installation. In this chapter you are going to see the various
methods used to collect performance-related data from SQL Server. Performance bottlenecks can
arise on three different resources: disk, memory, and CPU. Collecting performance-related data
from SQL Server is very important for any troubleshooting. This chapter illustrates how to collect
such data related to these resources.

SQL Server 2008 comes with the new feature Performance Data Collection. This chapter covers
some functionality of the Data Collector by using Windows PowerShell. This chapter will also help
you understand how to execute SQL Server stored procedures on a remote machine and bring the
output data from one server to another.

There are two types of performance-related data activities. One is collecting performance-related
data from the host; the other is collecting performance-related data related to the SQL Server
instance. Both are equally important for troubleshooting any performance-related issues.
Performance-related data collection can be scheduled on-host or off-host depending on the
company and resource utilization.

SQL Server Performance Data Collection
First we’ll collect information related to SQL Server. Data collection based on SQL Server–related
performance is usually an on-host job because it involves large amounts of data and you don’t want
to fill up the network bandwidth. As discussed in the previous chapter, there will always be an
administration database on the SQL Server instance that you install. Any method you use to collect
data requires two components: a place to store the data, which would be a database, and the scripts
that get the performance data from the host or the SQL Server.

Chapter 17: Collecting Performance Data

If you haven’t created such a database, then create the following admin database now:

create database admin
go
use admin
go

Now create the following tables that store the SQL Server–related performance data. You can execute the
following T-SQL commands on every server or make it a part of the SQL Server installation. Here we are
creating five tables in the admin database:

❑ AWEAllocated

❑ LogFileUsage

❑ TopQueries

❑ TaskCount

❑ TopMemConsumption

The table AWEAllocated stores data related to the amount of memory allocated by the memory clerks
used by Address Windowing Extensions (AWE). SQL Server supports AWE, which enables the use of
physical memory over 4 gigabytes (GB) on 32-bit versions of Microsoft Windows operating systems.
The table LogFileUsage stores data related to log file usage in every database on the server. The table
TopQueries will store data related to the top ten queries being executed based on CPU usage. The table
TaskCount will store data related to SQL Scheduler on the server. The table TopMemConsumption stores
data related to all the memory clerks that are currently active in the server. Here is the code to create the
tables:

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

USE [admin]
GO

/****** Object: Table [dbo].[AWEAllocated] Script Date: 08/21/2008 11:47:19 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].

[AWEAllocated]’) AND type in (N’U’))
DROP TABLE [dbo].[AWEAllocated]
GO

CREATE TABLE [dbo].[AWEAllocated](
[AWE allocated, Mb] [bigint] NULL,
[servername] [sysname] NULL,
[datestamp] [datetime] NULL

) ON [PRIMARY]

GO

/****** Object: Table [dbo].[LogFileUsage] Script Date: 08/21/2008 11:47:49 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].

[LogFileUsage]’) AND type in (N’U’))

402

Chapter 17: Collecting Performance Data

DROP TABLE [dbo].[LogFileUsage]
GO

CREATE TABLE [dbo].[LogFileUsage](
[servername] [nvarchar](128) NULL,
[instance_name] [nchar](128) NULL,
[Log File(s) Used Size (KB)] [bigint] NOT NULL,
[datestamp] [datetime] NOT NULL

) ON [PRIMARY]

GO

/****** Object: Table [dbo].[TopQueries] Script Date: 08/21/2008 12:24:27 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].

[TopQueries]’) AND type in (N’U’))
DROP TABLE [dbo].[TopQueries]
GO

CREATE TABLE [dbo].[TopQueries](
[Servername] [nvarchar](128) NULL,
[creation_time] [datetime] NOT NULL,
[last_execution_time] [datetime] NOT NULL,
[row_no] [bigint] NULL,
[l1] [bigint] NULL,
[total_worker_time] [numeric](26, 6) NULL,
[AvgCPUTime] [numeric](38, 18) NULL,
[LogicalReads] [bigint] NOT NULL,
[LogicalWrites] [bigint] NOT NULL,
[execution_count] [bigint] NOT NULL,

[AggIO] [bigint] NULL,
[AvgIO] [numeric](38, 18) NULL,

[query_text] [nvarchar](max) NULL,
[db_name] [nvarchar](128) NULL,
[object_id] [int] NULL,
[datestamp] [datetime] NOT NULL

) ON [PRIMARY]

GO

/****** Object: Table [dbo].[TaskCount] Script Date: 08/21/2008 11:48:02 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].

[TaskCount]’) AND type in (N’U’))
DROP TABLE [dbo].[TaskCount]
GO

CREATE TABLE [dbo].[TaskCount](
[scheduler_id] [int] NOT NULL,
[current_tasks_count] [int] NOT NULL,
[runnable_tasks_count] [int] NOT NULL,
[servername] [sysname] NULL,
[datestamp] [datetime] NULL

) ON [PRIMARY]
GO

/****** Object: Table [dbo].[TopMemConsumption] Script Date: 08/21/2008
11:48:15 ******/

403

Chapter 17: Collecting Performance Data

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].
[TopMemConsumption]’) AND type in (N’U’))

DROP TABLE [dbo].[TopMemConsumption]
GO

CREATE TABLE [dbo].[TopMemConsumption](
[servername] [nvarchar](128) NULL,
[type] [nvarchar](60) NOT NULL,
[SPA Mem, Kb] [bigint] NULL,
[datestamp] [datetime] NOT NULL

) ON [PRIMARY]

GO

Now create the following procedure that retrieves the data from various dynamic management views
(DMVs) and stores the SQL server–related performance data into the tables you just created. The DMVs
used in this procedure are as follows:

❑ sys.dm_os_schedulers

❑ sys.dm_os_memory_clerks

❑ sys.dm_exec_query_stats

❑ sys.dm_exec_sql_text

❑ sys.dm_os_performance_counters

Microsoft introduced dynamic management views and functions to get server state information that can
be used to monitor the health of a server instance, diagnose problems, and tune performance. We use the
preceding DMVs to get specific information:

❑ Log file usage from sys.dm_os_performance_counters

❑ AWE memory from sys.dm_os_memory_clerks

❑ Top ten queries from sys.dm_exec_query_stats and sys.dm_exec_sql_text

❑ SQL Server Scheduler task counts from sys.dm_os_schedulers

❑ Top memory consumption by type of memory clerk from sys.dm_os_memory_clerks

USE [admin]
GO

/****** Object: StoredProcedure [dbo].[uspCollectPerfData] Script Date: 08/21/2008
11:53:23 ******/

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].
[uspCollectPerfData]’) AND type in (N’P’, N’PC’))

DROP PROCEDURE [dbo].[uspCollectPerfData]
GO

CREATE PROCEDURE uspCollectPerfData as
set nocount on

INSERT INTO TaskCount (servername,scheduler_id,current_tasks_count,
runnable_tasks_count,datestamp)

404

Chapter 17: Collecting Performance Data

SELECT @@SERVERNAME,
scheduler_id,current_tasks_count,runnable_tasks_count, GETDATE()
FROM sys.dm_os_schedulers
WHERE scheduler_id < 255

INSERT INTO AWEAllocated (servername, [AWE allocated, Mb],datestamp)
SELECT @@SERVERNAME,
SUM(awe_allocated_kb) / 1024 as [AWE allocated, Mb], GETDATE()
FROM sys.dm_os_memory_clerks

INSERT INTO LogFileUsage (servername,instance_name,[Log File(s) Used Size
(KB)],datestamp)

SELECT @@SERVERNAME,
instance_name,cntr_value ‘Log File(s) Used Size (KB)’, GETDATE()
FROM sys.dm_os_performance_counters
WHERE counter_name = ‘Log File(s) Used Size (KB)’
order by instance_name desc

INSERT INTO TopMemConsumption (servername, type,[SPA Mem, Kb] ,datestamp)
SELECT TOP 10 @@SERVERNAME,
type, SUM(single_pages_kb) as [SPA Mem, Kb], GETDATE()
FROM sys.dm_os_memory_clerks
GROUP BY type
ORDER BY SUM(single_pages_kb) DESC

INSERT INTO TopQueries (
Servername,creation_time,
last_execution_time,
row_no,
l1,
total_worker_time,
AvgCPUTime,
LogicalReads,
LogicalWrites,
execution_count,
AggIO,
AvgIO,
query_text,
db_name ,
object_id ,
datestamp)
select Top 10 @@SERVERNAME,

creation_time
, last_execution_time
,rank() over(order by (total_worker_time+0.0)/
execution_count desc,
sql_handle,statement_start_offset) as row_no

, (rank() over(order by (total_worker_time+0.0)/
execution_count desc,
sql_handle,statement_start_offset))%2 as l1

, (total_worker_time+0.0)/1000 as total_worker_time
, (total_worker_time+0.0)/(execution_count*1000)
as [AvgCPUTime]

, total_logical_reads as [LogicalReads]

405

Chapter 17: Collecting Performance Data

, total_logical_writes as [LogicalWrites]
, execution_count
, total_logical_reads+total_logical_writes as [AggIO]
, (total_logical_reads+total_logical_writes)/
(execution_count+0.0) as [AvgIO]

, case when sql_handle IS NULL
then ‘ ‘
else (substring(st.text,(qs.statement_start_offset+2)/2,

(case when qs.statement_end_offset = -1
then len(convert(nvarchar(MAX),st.text))*2
else qs.statement_end_offset
end - qs.statement_start_offset) /2))

end as query_text
, db_name(st.dbid) as db_name
, st.objectid as object_id,
GETDATE()
from sys.dm_exec_query_stats qs
cross apply sys.dm_exec_sql_text(sql_handle) st
where total_worker_time > 0
order by (total_worker_time+0.0)/(execution_count*1000)

GO

You can create the preceding tables and procedures using the SQLPerfmonDDL.sql file available for
download from the Wrox website for this book. Once you have executed the preceding script, you have
created the tables where you can store all the performance-related data and the stored procedure to
collect the performance data.

The next step is to create the script that actually gets the performance-related data from the servers.

Now create the PowerShell script C:\DBASripts\Collect-SQLPerfmonData.ps1, as shown in the fol-
lowing code. This script accepts a server name as parameter and then executes the uspCollectPerfData
stored procedure created earlier on that server:

#===
#
NAME: Collect-SQLPerfmonData.ps1
#
AUTHOR: Yan and MAK
DATE : 5/1/2008
#
COMMENT: This script collects SQL Server performance data from a SQL Server

instance
#===

param (
[string] $serverName

)

. C:\DBAScripts\dbaLib.ps1

if ($serverName.Length -eq 0) {
"Please enter a server name."

exit 1
}

406

Chapter 17: Collecting Performance Data

Invoke-Sqlcmd -Query "exec dbo.[uspCollectPerfData]" -ServerInstance $serverName
-Database "admin"

Now execute the script to collect the performance data for the default instance on the host PowerServer3,
as shown here:

C:\DBAScripts\Collect-SQLPerfmonData.ps1 "PowerServer3"

This will execute the procedure uspCollectPerfData on the SQL Server instance PowerServer3 and store
the SQL Server performance-related data in the following listed tables:

❑ AWEAllocated

❑ LogFileUsage

❑ TopQueries

❑ TaskCount

❑ TopMemConsumption

Next, query all the tables that hold performance data related to storage, memory, and tasks, as shown
here:

Use admin
go
select * from dbo.AWEAllocated
select * from dbo.LogFileUsage
select * from dbo.TaskCount
select * from dbo.TopMemConsumption
select ServerName, Query_text, * from dbo.TopQueries

Figure 17-1 illustrates the data collected in the table AWEAllocated for the server PowerServer3.

Figure 17-1

Figure 17-2 illustrates the data collected in the table LogFileUsage for all the databases from the server
PowerServer3. You can see the Log File Used size in kilobytes.

Figure 17-2

407

Chapter 17: Collecting Performance Data

Figure 17-3 illustrates the total task count and runnable task count for each scheduler in the table
TaskCount.

Figure 17-3

Figure 17-4 illustrates the memory consumption by each memory clerk type in the table
TopMemConsumption from the server PowerServer3.

Figure 17-4

Figure 17-5 illustrates the top queries based on total CPU time collected in the table TopQueries from the
server PowerServer3. You can see the actual T-SQL statements in the column Query_text.

Figure 17-5

This SQL Server performance-related data-collection PowerShell script can be scheduled to run on-host
as a SQL Server Agent job with a PowerShell job step or a scheduled task.

SQL Server Host Performance Data Collection
Though host-related performance data is more important for Windows operations, it is necessary for SQL
Server DBAs to collect such data for any analysis related to performance troubleshooting.

Host-related performance data can be obtained using the WMI object and stored in a centralized
database. That centralized database could be created in the inventory server.

408

Chapter 17: Collecting Performance Data

You may be wondering why you are going to use the inventory server to collect host-related performance
data, and the admin database for SQL Server–related performance data. A SQL Server host many have
more than one SQL Server instance. However, each instance will have its own admin database, creating a
dilemma regarding which instance you should use to collect host-related performance data.

Another reason to choose a centralized database is to distribute the load. All host-related performance is
collected in a centralized database and all SQL Server instances related to performance data are collected
on each instance.

The next script creates the database PerfMon_DB on the inventory server:

USE [master]
GO

/****** Object: Database [PerfMon_DB] Script Date: 08/23/2008 03:09:13 ******/
IF EXISTS (SELECT name FROM sys.databases WHERE name = N’PerfMon_DB’)
DROP DATABASE [PerfMon_DB]
GO

CREATE DATABASE PerfMon_DB
Go

Now create the tables where all the host-related performance data will be stored:

❑ PerfDisk_PhysicalDisk: Stores data related to physical disk information

❑ PerfRawData_PerfOS_Memory: Stores information related to memory usage

❑ PerfRawData_PerfOS_Processor: Stores information about the processor

❑ PerfRawData_PerfProc_Process: Stores information about processes

❑ PerfRawData_Tcpip_NetworkInterface: Stores information about the network

Performance bottlenecks could occur on any of these resources. Here is the code:

USE [PerfMon_DB]
GO

/****** Object: Table [dbo].[PerfDisk_PhysicalDisk] Script Date: 08/23/2008
03:29:25 ******/

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].
[PerfDisk_PhysicalDisk]’) AND type in (N’U’))

DROP TABLE [dbo].[PerfDisk_PhysicalDisk]
GO

CREATE TABLE PerfDisk_PhysicalDisk(
Hostname varchar(100) NULL ,
___GENUS int NULL ,
___CLASS varchar(100) NULL ,
___SUPERCLASS varchar(100) NULL ,
___DYNASTY varchar(100) NULL ,
___RELPATH varchar(100) NULL ,
___PROPERTY_COUNT int NULL ,
___DERIVATION varchar(100) NULL ,

409

Chapter 17: Collecting Performance Data

___SERVER varchar(100) NULL ,
___NAMESPACE varchar(100) NULL ,
___PATH varchar(100) NULL ,
AvgDiskBytesPerRead bigint NULL ,
AvgDiskBytesPerRead_Base bigint NULL ,
AvgDiskBytesPerTransfer bigint NULL ,
AvgDiskBytesPerTransfer_Base bigint NULL ,
AvgDiskBytesPerWrite bigint NULL ,
AvgDiskBytesPerWrite_Base bigint NULL ,
AvgDiskQueueLength bigint NULL ,
AvgDiskReadQueueLength bigint NULL ,
AvgDisksecPerRead bigint NULL ,
AvgDisksecPerRead_Base bigint NULL ,
AvgDisksecPerTransfer bigint NULL ,
AvgDisksecPerTransfer_Base bigint NULL ,
AvgDisksecPerWrite bigint NULL ,
AvgDisksecPerWrite_Base bigint NULL ,
AvgDiskWriteQueueLength bigint NULL ,
Caption varchar(100) NULL ,
CurrentDiskQueueLength bigint NULL ,
Description varchar(100) NULL ,
DiskBytesPersec bigint NULL ,
DiskReadBytesPersec bigint NULL ,
DiskReadsPersec bigint NULL ,
DiskTransfersPersec bigint NULL ,
DiskWriteBytesPersec bigint NULL ,
DiskWritesPersec bigint NULL ,
Frequency_Object bigint NULL ,
Frequency_PerfTime bigint NULL ,
Frequency_Sys100NS bigint NULL ,
Name varchar(100) NULL ,
PercentDiskReadTime bigint NULL ,
PercentDiskTime bigint NULL ,
PercentDiskWriteTime bigint NULL ,
PercentIdleTime bigint NULL ,
SplitIOPerSec bigint NULL ,
Timestamp_Object bigint NULL ,
Timestamp_PerfTime bigint NULL ,
Timestamp_Sys100NS bigint NULL ,
datestamp datetime default getdate())
/****** Object: Table [dbo].[PerfRawData_PerfOS_Memory] Script Date: 08/23/2008

03:29:25 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].

[PerfRawData_PerfOS_Memory]’) AND type in (N’U’))
DROP TABLE [dbo].PerfRawData_PerfOS_Memory
GO

CREATE TABLE PerfRawData_PerfOS_Memory(
Hostname varchar(100) NULL ,
___GENUS bigint NULL ,
___CLASS varchar(100) NULL ,
___SUPERCLASS varchar(100) NULL ,
___DYNASTY varchar(100) NULL ,
___RELPATH varchar(100) NULL ,
___PROPERTY_COUNT bigint NULL ,

410

Chapter 17: Collecting Performance Data

___DERIVATION varchar(100) NULL ,
___SERVER varchar(100) NULL ,
___NAMESPACE varchar(100) NULL ,
___PATH varchar(100) NULL ,
AvailableBytes bigint NULL ,
AvailableKBytes bigint NULL ,
AvailableMBytes bigint NULL ,
CacheBytes bigint NULL ,
CacheBytesPeak bigint NULL ,
CacheFaultsPersec bigint NULL ,
Caption varchar(100) NULL ,
CommitLimit bigint NULL ,
CommittedBytes bigint NULL ,
DemandZeroFaultsPersec bigint NULL ,
Description varchar(100) NULL ,
FreeAndZeroPageListBytes bigint NULL ,
FreeSystemPageTableEntries bigint NULL ,
Frequency_Object bigint NULL ,
Frequency_PerfTime bigint NULL ,
Frequency_Sys100NS bigint NULL ,
ModifiedPageListBytes bigint NULL ,
Name varchar(100) NULL ,
PageFaultsPersec bigint NULL ,
PageReadsPersec bigint NULL ,
PagesInputPersec bigint NULL ,
PagesOutputPersec bigint NULL ,
PagesPersec bigint NULL ,
PageWritesPersec bigint NULL ,
PercentCommittedBytesInUse bigint NULL ,
PercentCommittedBytesInUse_Base bigint NULL ,
PoolNonpagedAllocs bigint NULL ,
PoolNonpagedBytes bigint NULL ,
PoolPagedAllocs bigint NULL ,
PoolPagedBytes bigint NULL ,
PoolPagedResidentBytes bigint NULL ,
StandbyCacheCoreBytes bigint NULL ,
StandbyCacheNormalPriorityBytes bigint NULL ,
StandbyCacheReserveBytes bigint NULL ,
SystemCacheResidentBytes bigint NULL ,
SystemCodeResidentBytes bigint NULL ,
SystemCodeTotalBytes bigint NULL ,
SystemDriverResidentBytes bigint NULL ,
SystemDriverTotalBytes bigint NULL ,
Timestamp_Object bigint NULL ,
Timestamp_PerfTime bigint NULL ,
Timestamp_Sys100NS bigint NULL ,
TransitionFaultsPersec bigint NULL ,
TransitionPagesRePurposedPersec bigint NULL ,
WriteCopiesPersec bigint NULL ,
datestamp datetime default getdate())

/****** Object: Table [dbo].[PerfRawData_PerfOS_Processor] Script Date: 08/23/2008
03:29:25 ******/

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].
[PerfRawData_PerfOS_Processor]’) AND type in (N’U’))

411

Chapter 17: Collecting Performance Data

DROP TABLE [dbo].PerfRawData_PerfOS_Processor
GO
CREATE TABLE PerfRawData_PerfOS_Processor(
Hostname varchar(100) NULL ,
___GENUS bigint NULL ,
___CLASS varchar(100) NULL ,
___SUPERCLASS varchar(100) NULL ,
___DYNASTY varchar(100) NULL ,
___RELPATH varchar(100) NULL ,
___PROPERTY_COUNT bigint NULL ,
___DERIVATION varchar(100) NULL ,
___SERVER varchar(100) NULL ,
___NAMESPACE varchar(100) NULL ,
___PATH varchar(100) NULL ,
C1TransitionsPersec bigint NULL ,
C2TransitionsPersec bigint NULL ,
C3TransitionsPersec bigint NULL ,
Caption varchar(100) NULL ,
Description varchar(100) NULL ,
DPCRate bigint NULL ,
DPCsQueuedPersec bigint NULL ,
Frequency_Object bigint NULL ,
Frequency_PerfTime bigint NULL ,
Frequency_Sys100NS bigint NULL ,
InterruptsPersec bigint NULL ,
Name varchar(100) NULL ,
PercentC1Time bigint NULL ,
PercentC2Time bigint NULL ,
PercentC3Time bigint NULL ,
PercentDPCTime bigint NULL ,
PercentIdleTime bigint NULL ,
PercentInterruptTime bigint NULL ,
PercentPrivilegedTime bigint NULL ,
PercentProcessorTime bigint NULL ,
PercentUserTime bigint NULL ,
Timestamp_Object bigint NULL ,
Timestamp_PerfTime bigint NULL ,
Timestamp_Sys100NS bigint NULL ,
datestamp datetime default getdate())

/****** Object: Table [dbo].[PerfRawData_PerfProc_Process] Script Date: 08/23/2008
03:29:25 ******/

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].
[PerfRawData_PerfProc_Process]’) AND type in (N’U’))

DROP TABLE [dbo].PerfRawData_PerfProc_Process
GO
CREATE TABLE PerfRawData_PerfProc_Process(
Hostname varchar(100) NULL ,
___GENUS bigint NULL ,
___CLASS varchar(100) NULL ,
___SUPERCLASS varchar(100) NULL ,
___DYNASTY varchar(100) NULL ,
___RELPATH varchar(100) NULL ,
___PROPERTY_COUNT bigint NULL ,
___DERIVATION varchar(100) NULL ,

412

Chapter 17: Collecting Performance Data

___SERVER varchar(100) NULL ,
___NAMESPACE varchar(100) NULL ,
___PATH varchar(100) NULL ,
Caption varchar(100) NULL ,
CreatingProcessID bigint NULL ,
Description varchar(100) NULL ,
ElapsedTime bigint NULL ,
Frequency_Object bigint NULL ,
Frequency_PerfTime bigint NULL ,
Frequency_Sys100NS bigint NULL ,
HandleCount bigint NULL ,
IDProcess bigint NULL ,
IODataBytesPersec bigint NULL ,
IODataOperationsPersec bigint NULL ,
IOOtherBytesPersec bigint NULL ,
IOOtherOperationsPersec bigint NULL ,
IOReadBytesPersec bigint NULL ,
IOReadOperationsPersec bigint NULL ,
IOWriteBytesPersec bigint NULL ,
IOWriteOperationsPersec bigint NULL ,
Name varchar(100) NULL ,
PageFaultsPersec bigint NULL ,
PageFileBytes bigint NULL ,
PageFileBytesPeak bigint NULL ,
PercentPrivilegedTime bigint NULL ,
PercentProcessorTime bigint NULL ,
PercentUserTime bigint NULL ,
PoolNonpagedBytes bigint NULL ,
PoolPagedBytes bigint NULL ,
PriorityBase bigint NULL ,
PrivateBytes bigint NULL ,
ThreadCount bigint NULL ,
Timestamp_Object bigint NULL ,
Timestamp_PerfTime bigint NULL ,
Timestamp_Sys100NS bigint NULL ,
VirtualBytes bigint NULL ,
VirtualBytesPeak bigint NULL ,
WorkingSet bigint NULL ,
WorkingSetPeak bigint NULL ,
WorkingSetPrivate bigint NULL ,
datestamp datetime default getdate())

/****** Object: Table [dbo].[PerfRawData_Tcpip_NetworkInterface]
Script Date: 08/23/2008 03:29:25 ******/

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].
[PerfRawData_Tcpip_NetworkInterface]’) AND type in (N’U’))

DROP TABLE [dbo].PerfRawData_Tcpip_NetworkInterface
GO
CREATE TABLE PerfRawData_Tcpip_NetworkInterface(
Hostname varchar(100) NULL ,
___GENUS bigint NULL ,
___CLASS varchar(100) NULL ,
___SUPERCLASS varchar(100) NULL ,
___DYNASTY varchar(100) NULL ,
___RELPATH varchar(300) NULL ,

413

Chapter 17: Collecting Performance Data

___PROPERTY_COUNT bigint NULL ,
___DERIVATION varchar(100) NULL ,
___SERVER varchar(100) NULL ,
___NAMESPACE varchar(100) NULL ,
___PATH varchar(300) NULL ,
BytesReceivedPersec bigint NULL ,
BytesSentPersec bigint NULL ,
BytesTotalPersec bigint NULL ,
Caption varchar(100) NULL ,
CurrentBandwidth bigint NULL ,
Description varchar(100) NULL ,
Frequency_Object bigint NULL ,
Frequency_PerfTime bigint NULL ,
Frequency_Sys100NS bigint NULL ,
Name varchar(100) NULL ,
OutputQueueLength bigint NULL ,
PacketsOutboundDiscarded bigint NULL ,
PacketsOutboundErrors bigint NULL ,
PacketsPersec bigint NULL ,
PacketsReceivedDiscarded bigint NULL ,
PacketsReceivedErrors bigint NULL ,
PacketsReceivedNonUnicastPersec bigint NULL ,
PacketsReceivedPersec bigint NULL ,
PacketsReceivedUnicastPersec bigint NULL ,
PacketsReceivedUnknown bigint NULL ,
PacketsSentNonUnicastPersec bigint NULL ,
PacketsSentPersec bigint NULL ,
PacketsSentUnicastPersec bigint NULL ,
Timestamp_Object bigint NULL ,
Timestamp_PerfTime bigint NULL ,
Timestamp_Sys100NS bigint NULL ,
datestamp datetime default getdate())

You can create the preceding tables and procedures using the HostPerfmonDLL.sql file.

Next, create the C:\DBAScripts\Collect-HostPerfmon.ps1 script. This Windows PowerShell script is
going to get various performance-related information using Get-WMIObject. Get-WMIObject retrieves
the information from the following WMI classes from the remote machine:

❑ Win32_PerfRawData_PerfDisk_PhysicalDisk

❑ Win32_PerfRawData_PerfOS_Memory

❑ Win32_PerfRawData_PerfOS_Processor

❑ Win32_PerfRawData_PerfProc_Process

❑ Win32_PerfRawData_Tcpip_NetworkInterface

The script also generates insert statements on-the-fly and stores them in a file perfmondata.sql. Then it
executes the file, which basically stores the data in the following tables, respectively, in the PerfMon_DB
database on the inventory server:

❑ PerfDisk_PhysicalDisk

❑ PerfRawData_PerfOS_Memory

414

Chapter 17: Collecting Performance Data

❑ PerfRawData_PerfOS_Processor

❑ PerfRawData_PerfProc_Process

❑ PerfRawData_Tcpip_NetworkInterface

The complete Collect-HostPerfmon.ps1 script is available for download on the Wrox website for this
book. A portion of the script is shown here to get you started:

#===
#
NAME: Collect-HostPerfmondata.ps1
#
AUTHOR: Yan and MAK
DATE : 5/1/2008
#
COMMENT: This script collects performance data from a SQL Server host.
#===

param ([String] $hostname)

. C:\DBAScripts\dbaLib.ps1

if ($hostname.Length -eq 0) {
"Please enter a host name."

exit 1
}

$filename = "c:\DBAScripts\perfmondata.sql"

out-file -inputobject "use PerfMon_DB" -filepath $filename -encoding "Default"
out-file -inputobject "GO" -filepath $filename -encoding "Default" -append
out-file -inputobject "set nocount on" -filepath $filename -encoding "Default" -append

out-file -inputobject "GO" -filepath $filename -encoding "Default" -append
out-file -inputobject "set quoted_identifier off" -filepath $filename -encoding

"Default" -append
out-file -inputobject "GO" -filepath $filename -encoding "Default" -append

Get physical disk information from the Win32_PerfRawData_PerfDisk_PhysicalDisk
WMI class

and insert into the PerfDisk_PhysicalDisk table.

$PerfDisk_PhysicalDisk=get-wmiobject -class Win32_PerfRawData_PerfDisk_PhysicalDisk
-computername $hostname

$tsql=""

foreach ($perfdata1 in $PerfDisk_PhysicalDisk) {
$tsql="insert into dbo.PerfDisk_PhysicalDisk
(Hostname,___GENUS,___CLASS,___SUPERCLASS,___DYNASTY,___RELPATH,___PROPERTY_COUNT,

___DERIVATION,___SERVER,___NAMESPACE,___PATH,
AvgDiskBytesPerRead,AvgDiskBytesPerRead_Base,AvgDiskBytesPerTransfer,

AvgDiskBytesPerTransfer_Base,AvgDiskBytesPerWrite,
AvgDiskBytesPerWrite_Base,AvgDiskQueueLength,AvgDiskReadQueueLength,

415

Chapter 17: Collecting Performance Data

AvgDisksecPerRead,AvgDisksecPerRead_Base,
AvgDisksecPerTransfer,AvgDisksecPerTransfer_Base,AvgDisksecPerWrite,

AvgDisksecPerWrite_Base,AvgDiskWriteQueueLength,
Caption,CurrentDiskQueueLength,Description,DiskBytesPersec,DiskReadBytesPersec,

DiskReadsPersec,DiskTransfersPersec,

Now execute the script c:\DBAScripts\Collect_HostPerfmonData.ps1:

C:\DBAScripts\Collect-HostPerfmonData.ps1 PowerServer3

Note that PowerServer3 is the host name from where we are getting all the performance data.
$InventoryServer is the inventory server where the PerfMon_DB database is created.

When executed, this script creates the SQL script file C:\DBAScripts\perfmondata.sql on-the-fly and
executes the file using the Invoke-Sqlcmd cmdlet.

After running the preceding script, you can see the data populating the database PerfMon_DB on the
inventory server, as shown in Figure 17-6. Execute the following Transact SQL command to see
the results:

use PerfMon_DB
go

select * from dbo.PerfDisk_PhysicalDisk
select * from dbo.PerfRawData_PerfOS_Memory
select * from dbo.PerfRawData_PerfOS_Processor
select * from dbo.PerfRawData_PerfProc_Process
select * from dbo.PerfRawData_Tcpip_NetworkInterface

Figure 17-6

416

Chapter 17: Collecting Performance Data

This script can be scheduled to run regularly — say, every fifteen minutes — from the inventory server
to collect the performance data of a SQL Server host or a group of SQL Server hosts by running multiple
Collect-HostPerfmonData.ps1 commands.

Summary
This chapter illustrated how to collect SQL Server–related performance data on different SQL Server
instances, and host-related performance data from the host, and import them into the inventory
server database. This chapter should have given you a general idea of how to use dynamic management
views, Windows PowerShell, and stored procedures to get performance-related data. It is hoped that
the information provided here enables you to develop your own code or modify these codes to fit your
needs.

417

Monitoring SQL Ser ver

Proactive monitoring is essential to ensure the stability of your SQL Server environment. Proactive
monitoring means finding problems and potential service outages before they occur. As a DBA,
you need to ensure that every SQL server instance in your environment is running and healthy, and
that no users experience connection problems. You also need to keep track of the reboot schedule
of each SQL Server host because regular reboots help improve server performance, and capture any
OS or SQL Server errors before they evolve into critical issues.

Oftentimes, an improperly designed application causes blockings and deadlocks. When processes
are blocked, users think something is wrong with the database server (and that you are not doing
your job). To save everyone a lot of grief, you should capture the blockings or deadlocks as they
occur, and notify users that their processes need to be examined before they call you on your hotline.

In this chapter and Chapter 19, we will implement these critical monitoring tasks. This chapter
covers the following topics.

❑ Pinging SQL Server hosts

❑ Checking SQL Server–related services on SQL Server hosts

❑ Checking uptime of SQL Server hosts

❑ Monitoring Windows event logs

❑ Monitoring SQL Server error log

❑ Monitoring blockings

❑ Monitoring deadlocks

Chapter 18: Monitoring SQL Server

Pinging SQL Ser ver Hosts
Even before monitoring the various components of SQL Server, the most important thing to monitor is
whether the host machine is reachable. You can use the Ping-Host function to perform this task. The
Ping-Host function is used to ping one host. If the host can be pinged, then a green message is printed
out. Otherwise, a red message is printed out to alert the administrator. The function is shown here:

Function Ping-Host ([string] $hostname)
{

[String] $alertSubject=""
[String] $alertMessage=""

$status=Get-WmiObject Win32_PingStatus -Filter "Address=’$hostname’" |
Select-Object statuscode

if($status.statuscode -eq 0)
{

Write-Host "$hostname is reachable." -background "GREEN" -foreground
"BLACK"

}
else
{

Write-Host "$hostname is NOT reachable." -background "RED" -
foreground "BLACK"

}
}

Save this function in your library file so that it can be easily sourced into other scripts later. For the
example in this book, this function will be put into our library file C:\DBAScripts\dbaLib.ps1. However,
this function only prints out messages in the console. When a host is down or not reachable, the DBA
group usually needs to be notified so that proper timely actions can be taken such as escalating the
problem to the system administrator. In this book, we will notify the DBA through e-mail. However,
in an enterprise environment, it is not plausible to expect the DBA group to read through hundreds or
even thousands of alert e-mails every day and not miss anything. In this kind of environment, an alert
management system, such as Netcool, is usually in place to consolidate all the alerts and display them on
a user’s console.

If your company has an alert management system in place, you can easily incorporate the scripts in
this book by simply changing the scripts to send a SNMP trap message or whatever message the alert
management system requires instead of an e-mail. For the purposes of this book, we need a function
called Send-Email to send e-mails. Because this function is going to be used often to send notifications, it
will also be placed in the library file C:\DBAScripts\dbaLib.ps1. Oftentimes, a particular SMTP server
is used to send e-mails. This SMTP server can be defined as the default server in the library file. If your
SMTP server needs identification, then you will need to specify the SMTP user name and password.
You can also define the sending and receiving e-mail addresses used by the DBA group as default in the
library file for easy reference. The common variables and Send-Email function are shown here:

##
Define the default SMTP server and e-mail group used by DBA
Please change the SMTP server, the sending and receiving e-mail addresses before you

420

Chapter 18: Monitoring SQL Server

start running this script!
##
$smtpServer="smtp.powerdomain.com"
$fromAddress="yanpan@powerdomain.com"
$toAddress="yanpan@powerdomain.com"
$smtpUserName=""
$smtpPassword=""

Add function to send e-mail
##
Function Send-Email([String] $smtpServer, [String] $from, [String] $to, [String]
$subject, [String] $body, [String] $userName, [String] $password)
{

if ($userName.Length > 0) {
$credential=New-Object System.Net.NetworkCredential -argumentList

$userName, $password
Send-MailMessage -From $from -To $to -Subject $subject -Body $body -

SmtpServer $smtpServer -Credential $credential
}
else {

Send-MailMessage -From $from -To $to -Subject $subject -Body $body -
SmtpServer $smtpServer

}
}

Please change the values for the SMTP server, sending and receiving e-mail addresses in the dbaLib.ps1
file before you start running the scripts in this chapter and next chapter in your environment!

Now we can just call the Send-Email function in the Ping-Host function to send a notification e-mail
when a host is not reachable. The complete Ping-Host function is shown here:

Function Ping-host ([string] $hostname)
{

[String] $alertSubject=""
[String] $alertMessage=""

$status=Get-WmiObject Win32_PingStatus -Filter "Address=’$hostname’" |
Select-Object statuscode

if($status.statuscode -eq 0)
{

Write-Host "$hostname is reachable." -background "GREEN" -foreground
"BLACK"

}
else
{

Write-Host "$hostname is NOT reachable." -background "RED" -
foreground "BLACK"

An alert e-mail is sent if the host cannot be pinged.
Write-Host "Sending an e-mail regarding $hostname ..."
$alertSubject="Ping Status"
$alertMessage="$hostName is not reachable. Please check."

421

Chapter 18: Monitoring SQL Server

Send-Email $smtpServer $fromAddress $toAddress $alertSubject
$alertMessage $smtpUserName $smtpPassword

}
}

In Chapter 15, we set up an inventory database named SQL_Inventory. Now we need a script to go
through the SQL Server hosts in the inventory and ping each host using the Ping-Host function. The
complete Ping-Hosts.ps1 script is shown here:

##
Source in our library file
##
. C:\DBAScripts\dbaLib.ps1

[String] $strQuerySql=""
[String] $sqlHostName=""

$strQuerySql="SELECT hostName FROM dbo.Hosts"

Gets the list of SQL Server hosts from the inventory database
$sqlHosts=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer -
Database $inventoryDatabase

Ping every SQL Server host
Foreach ($sqlHost in $sqlHosts) {

$sqlHostName=$sqlHost.hostName
Ping-host $sqlHostName

}

As you can see, the Ping-Hosts.ps1 script and the library file C:\DBAScripts\dbaLib.ps1 are sourced
in the beginning so the script can call the Ping-Host function later. Let’s run the script to check the status
of the hosts:

C:\DBAScripts\Ping-Hosts.ps1

Figure 18-1 shows two cluster nodes, NODE1 and NODE2, that cannot be pinged.

Figure 18-1

Two e-mails are sent, one for each node. A sample alert message is shown in Figure 18-2.

Now you can query all the hosts from the SQL Inventory database by executing continued Ping-
Hosts.ps1 and sending notifications if any host cannot be pinged. This script can be scheduled to run
every half hour or fifteen minutes depending on the service level agreement.

422

Chapter 18: Monitoring SQL Server

Figure 18-2

Checking SQL Ser ver–related Ser vices on
SQL Ser ver Hosts

Pinging hosts is just the first step in monitoring SQL Server. Once you know that you can ping a host and
it is reachable, you should check whether SQL Server–related services are healthy. If a service that is set
to start automatically is not running for some reason, then you need to capture that. If a service’s status is
not OK, indicating something such as an error or hanging when stopping, then you need to capture that
as well.

The following example creates a function, Check-Services, that would capture these exceptions from the
SQL Server–related services on a host:

Function Check-Services([String] $hostName)
{

[String] $alertSubject=""
[String] $alertMessage=""

Get SQL Server related services on the host
$services=Get-WmiObject -class Win32_Service -computername $hostName

| Where-Object {$_.name -like ‘*SQL*’}

foreach ($service in $services)
{

If a service that is set to start automatically is not running,
then write a red error message and send an alert e-mail.

if ($service.State -ne "Running" -and $service.StartMode -eq "Auto")
{

$alertSubject="Service Exception"
$alertMessage="On " + $hostName + ", the service " +

$service.Name + " is set to AutoStart, but it is " + $Service.State + ".
Please check."

Write-Host $alertMessage -background "RED" -foreground
"BLACK"

423

Chapter 18: Monitoring SQL Server

Write-Host "Sending an e-mail regarding" $service.Name "on"
$hostName "..."

Send-Email $smtpServer $fromAddress $toAddress
$alertSubject $alertMessage $smtpUserName $smtpPassword

}
If the status of a service is not OK, then write a red error

message and send an alert e-mail.
elseif ($service.Status -ne "OK") {

$alertSubject="Service Exception"
$alertMessage="On " + $hostName + ", the status of the

service " + $service.Name + " is " + $Service.State + ". Please check."
Write-Host $alertMessage -background "RED" -foreground

"BLACK"

Write-Host "Sending an e-mail regarding" $service.Name "on"
$hostName "..."

Send-Email $smtpServer $fromAddress $toAddress
$alertSubject $alertMessage $smtpUserName $smtpPassword

}
}

}

This function is added to the C:\DBAScripts\dbaLib.ps1 file. We still need a script to go through the
SQL Server hosts in the inventory and check each host using the Check-Services function. However,
unlike the Ping-Hosts.ps1 script, which checks every node of a cluster, we only check the active node
of the cluster using the Windows cluster name, as SQL Server services only run on the active node. The
script, shown here, is called Check-Services.ps1:

##
Source in our library file
##
. C:\DBAScripts\dbaLib.ps1

[String] $strQuerySql=""
[String] $sqlHostName=""

$strQuerySql="SELECT hostName
FROM dbo.Hosts h LEFT JOIN dbo.ClusterNodes cn ON h.hostID=cn.nodeID
WHERE cn.clusterID IS NULL
UNION
SELECT WindowsClusterName as hostName
FROM dbo.Clusters"

Gets the list of SQL Server hosts from the inventory database
$sqlHosts=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer -
Database $inventoryDatabase

Check SQL Server related services on every SQL Server host
Foreach ($sqlHost in $sqlHosts) {

$sqlHostName=$sqlHost.hostName
Check-Services $sqlHostName

}

424

Chapter 18: Monitoring SQL Server

Now execute the Check-Services.ps1 script:

C:\DBAScripts\Check-Services

When the preceding PowerShell script is executed, the results shown in Figure 18-3 are returned.

Figure 18-3

Three services on DEMOPC are set to AutoStart, but they are stopped. Three individual e-mails are sent
regarding the three services. A sample alert message is shown in Figure 18-4.

Figure 18-4

As shown in Chapter 9, you can also query the SqlService class provided by the WMI Provider for
Configuration Management to check the SQL Server–related services.

The next example adds another function called Check-SqlServices to dbaLib.ps1 to check the SQL
Server 2008–related services:

Function Check-SqlServices ([string] $hostName)
{

[String] $alertSubject=""
[String] $alertMessage=""

Get SQL Server related services on the host

425

Chapter 18: Monitoring SQL Server

$services=Get-WmiObject -namespace
root\Microsoft\SqlServer\ComputerManagement10 -class SqlService -computername
$hostName

foreach ($service in $services)
{

If a service that is set to start automatically is not running,
then write a red error message and send an alert e-mail.

if ($service.State -ne 4 -and $service.StartMode -eq 2)
{

$alertSubject="Service Exception"
$alertMessage="On " + $hostName + ", the service " +

$service.ServiceName + " is set to AutoStart, but its state is " + $Service.State +
".Please check."

Write-Host $alertMessage -background "RED" -foreground
"BLACK"

Write-Host "Sending an e-mail regarding"
$service.ServiceName "on" $hostName "..."

Send-Email $smtpServer $fromAddress $toAddress
$alertSubject $alertMessage $smtpUserName $smtpPassword

}
You can add more exceptions here by adding more elseif cases.

}
}

This function is also added to the C:\DBAScripts\dbaLib.ps1 file. Now we create another script to go
through the SQL Server hosts in the inventory, checking each host using the Check-SqlServices function.
The Check-SqlServices.ps1 script is shown here:

Source in our library file
##
. C:\DBAScripts\dbaLib.ps1

[String] $strQuerySql=""
[String] $sqlHostName=""

$strQuerySql="SELECT hostName
FROM dbo.Hosts h LEFT JOIN dbo.ClusterNodes cn ON h.hostID=cn.nodeID
WHERE cn.clusterID IS NULL
UNION
SELECT WindowsClusterName as hostName
FROM dbo.Clusters"

Gets the list of SQL Server hosts from the inventory database
$sqlHosts=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer -
Database $inventoryDatabase

Check SQL Server related services on every SQL Server host
Foreach ($sqlHost in $sqlHosts) {

$sqlHostName=$sqlHost.hostName
Check-SqlServices $sqlHostName

}

426

Chapter 18: Monitoring SQL Server

Execute the Check-SqlServices.ps1 script. As shown in Figure 18-5, its output is similar to the
Check-Services.ps1 script. However, notice that one more service, the Service for Integration Services,
MsDtsServer100, on PowerServer3 is returned, which was missed by the Check-Services.ps1 script.
This is because the Check-Services function filters all the Windows services and returns only the ones
that have ‘‘SQL’’ in their name. Obviously, ‘‘MsDtsServer100’’ doesn’t contain a substring ‘‘SQL.’’
The Service for Reporting Services ReportServer also doesn’t contain ‘‘SQL’’ in its name. Therefore,
the Check-SqlServices script, which uses the SqlService class provided by the WMI Provider for
Configuration Management, is more suitable for checking SQL Server–related services.

C:\DBAScripts\Check-SqlServices.ps1

Figure 18-5

A sample alert message is shown in Figure 18-6.

Figure 18-6

Checking Uptime of SQL Ser ver Hosts
A Windows system needs to reboot regularly in order to run as efficiently as possible. Windows systems
that do not reboot regularly can be susceptible to memory leaks, fragmentation, and performance issues,
and the root cause of any subsequent problems or instability becomes difficult to ascertain. Besides that,

427

Chapter 18: Monitoring SQL Server

Microsoft releases patches on a monthly basis and many require reboots. Therefore, it is always useful to
know when a SQL Server host was last rebooted — that is, its uptime. Uptime helps us decide when to
schedule a reboot.

As you learned in Chapter 15, the Upsert-Host.ps1 script queries the Win32_OperatingSystem
WMI class on each host, and updates the OS information in the Hosts table. One of the columns,
lastBootUpTime, contains the last time each host was rebooted.

Let’s create a script to call Upsert-Host.ps1 on all the SQL Server hosts in our inventory. The Update-
SQLServerHosts.ps1 script is shown here:

##
Source in our library file
##
. C:\DBAScripts\dbaLib.ps1

[String] $strQuerySql=""
[String] $strCommand=""

Construct Upsert-Host.ps1 commands for every host in the inventory
$strQuerySql="SELECT ‘C:\DBAScripts\Upsert-Host.ps1 -hostName ‘ + hostName
+ ‘ -region ‘ + region + ‘ -location ‘ + location
+ ‘ -primaryBU ‘" + primaryBU
+ ‘" -description ‘" + description + ‘’" as Command
FROM dbo.Hosts"

$commands=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer -
Database $inventoryDatabase

Execute the Upsert-Host.ps1 commands
Foreach ($command in $commands) {

$strCommand=$command.Command
Invoke-Expression $strCommand

}

Execute the Update-SQLServerHosts.ps1 script to update host information (see Figure 18-7):

C:\DBAScripts\Update-SQLServerHosts.ps1

As long as the host information is up-to-date, simply run the following query against the Hosts table and
you will get how many days, hours, and minutes the hosts have been up:

USE SQL_Inventory

SELECT Convert(char(20), GETDATE(), 20) AS [Now]

SELECT hostName, lastBootUpTime,
DATEDIFF(MINUTE, lastBootUpTime, GETDATE())/24/60 as ‘Days’,
DATEDIFF(MINUTE, lastBootUpTime, GETDATE())/60
- (DATEDIFF(MINUTE, lastBootUpTime, GETDATE())/24/60)*24 as ‘Hours’,
DATEDIFF(MINUTE, lastBootUpTime, GETDATE())

428

Chapter 18: Monitoring SQL Server

Figure 18-7

- (DATEDIFF(MINUTE, lastBootUpTime, GETDATE())/60)*60 as ‘Minutes’
FROM dbo.Hosts

Figure 18-8 shows the uptime of all the SQL Server hosts.

Monitoring Windows Event Logs
SQL Server runs on top of the Windows operating system. Its performance depends heavily on the
health of that underlying operating system, and it needs the system to provide it with enough resources
to handle its workload. For example, if the I/O system degrades because one disk in a RAID group fails,
then the I/O performance of the SQL Server will also suffer. Sessions connecting to SQL Server will wait
longer for I/O operations to complete, or even get stuck.

Similarly, if the speed and duplex settings of the network card on the SQL Server host do not match the
settings on the connecting network switch port, the sending and receiving of network packages by SQL
Server can slow down significantly. Sessions will hang waiting for network resources, and end-users will
start seeing Web pages time out. Therefore, it is very important to monitor the overall operating system.

System events are stored in Windows event logs. The System log and Application log are the most useful.
In the rest of this chapter, we will talk about the on-host monitoring of Windows event logs and the SQL
Server error log. We actually already have the tools to tackle a single host. We described how to monitor
Windows event logs using the Get-EventLog cmdlet in Chapter 6, and how to monitor SQL Server error
log using the WMI Provider for Server Events in Chapter 10. Let’s put these tools to use.

429

Chapter 18: Monitoring SQL Server

Figure 18-8

Chapter 6 showed you how to filter the Application log in a date range and sort the results:

Get-EventLog -LogName "Application" | Where-Object {$_.EntryType -eq "Error"} |
Where-Object {($_.TimeGenerated -gt "2009/01/27") -and ($_.TimeGenerated -lt
"2009/01/28")} | Sort-Object TimeGenerated -descending | Format-Table -auto

You should monitor the System and Application logs by querying them regularly. Every query should
return the errors that occurred in the last interval. The preceding command just needs to be customized
to filter the events that occurred since the last time the log was queried. Suppose that we defined the
query interval in a variable called $sleepseconds. By default, the value of this variable is set to 60, which
means one minute. We save the last query time in a variable called $startTime, and the current time in
a variable called $cutoffTime. Each time, we query the events between $startTime and $cutoffTime. If
any error has been found, we send an alert e-mail. Between each query, we wait for the query interval,
$sleepseconds, and then query the event logs again. Here is the Monitor-WindowsEventLogs.ps1 script:

##
Initialize parameters
##

430

Chapter 18: Monitoring SQL Server

param (
[Int32]$sleepseconds=60 # Default query interval is 60 seconds (1 minute)

)

Source in our library file
##
. C:\DBAScripts\dbaLib.ps1

Initialize alert messages
[String] $sysAlertMessage = ""
[String] $appAlertMessage = ""

Start querying the event log entries $sleepseconds ago
[DateTime] $startTime = (Get-Date).AddSeconds(-$sleepseconds)
[DateTime] $cutoffTime = Get-Date

while ($true) {
Look for errors in the System Log that occur between now and $sleepseconds

ago
and send an e-mail if any error has been found.
$sysAlertMessage = (Get-EventLog -logname "System" | Where-Object

{$_.EntryType -eq "Error"} ‘
| Where-Object {($_.TimeGenerated –gt $startTime) -and

($_.TimeGenerated –le $cutoffTime)} ‘
| Select-Object MachineName, Message, Source, TimeGenerated |

Format-List | Out-String)

if ($sysAlertMessage) {
Send-Email $smtpServer $fromAddress $toAddress "System Error"

$sysAlertMessage $smtpUserName $smtpPassword
}

Look for errors in the Application Log that occur between now and
$sleepseconds ago

and send an e-mail if any error has been found.
$appAlertMessage = $alertMessage + (Get-EventLog -logname "Application" |

Where-Object {$_.EntryType -eq "Error"} ‘
| Where-Object {($_.TimeGenerated –gt $startTime) -and

($_.TimeGenerated –le $cutoffTime)} ‘
| Select-Object MachineName, Message, Source, TimeGenerated |

Format-List | Out-String)

if ($appAlertMessage) {
Send-Email $smtpServer $fromAddress $toAddress "Application Error"

$appAlertMessage $smtpUserName $smtpPassword
}

Start-Sleep –s $sleepseconds # Wait for $sleepseconds to query again

Set the new starting and ending times
$startTime = $cutoffTime
$cutoffTime = Get-Date

}

431

Chapter 18: Monitoring SQL Server

Note that the query interval can be changed by passing a different value to the $sleepseconds parameter.

Now we are ready to create our installation script Install-MonitorWindowsEventLogs.ps1 to copy the
Monitor-WindowsErrorLogs.ps1 script from the local host to the C:\DBAScripts directory on every
remote host and create a scheduled task to kick off the script at system startup on every host. The follow-
ing script creates a scheduled task like this on a host named POWERPC:

SCHTASKS /Create /S $sqlHostName /RU $sqlUserName /RP $sqlPassword /SC ONSTART /F /TN
"Monitor_WindowsEventLogs_POWERPC" /TR "powershell.exe C:\DBAScripts\Monitor-
WindowsEventLogs.ps1 60"

The installation script Install-MonitorWindowsEventLogs.ps1 is shown next. As you can see,
this script first gets the list of SQL Server hosts from the inventory. Then it copies the Monitor-
WindowsEventLogs.ps1 script, installs the scheduled task Monitor_WindowsEventLogs, and starts the
task on each host.

##
Initialize parameters
##
param (

[Int32]$sleepseconds=60 # Default interval is 60 seconds (1 minute)
)

##
Source in our library file
##
. C:\DBAScripts\dbaLib.ps1

[String] $strQuerySql=""
[String] $sqlHostName=""
[String] $sqlUserName="POWERDOMAIN\SqlService"
[String] $sqlPassword="P@ssw0rd" # Password for POWERDOMAIN\SqlService
[String] $localHostName=(Get-ChildItem Env:\ComputerName).Value

$strQuerySql="SELECT hostName FROM dbo.Hosts"

Get all SQL Server hosts
$sqlHosts=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer -
Database $inventoryDatabase

Foreach ($sqlHost in $sqlHosts) {
$sqlHostName=$sqlHost.hostName

Copy the Monitor-WindowsEventLogs.ps1 script from the local host to all the
remote hosts.

If ($sqlHostName -ne $localHostName) {
If (-not (Test-Path \\$sqlHostName\C$\DBAScripts -pathType

container)) {
New-Item \\$sqlHostName\C$\DBAScripts -type directory |

Out-Null
}

Copy both the Monitor-WindowsEventLogs.ps1 script and the library

432

Chapter 18: Monitoring SQL Server

file dbaLib.ps1.
Copy-Item C:\DBAScripts\Monitor-WindowsEventLogs.ps1

\\$sqlHostName\C$\DBAScripts -force
Copy-Item C:\DBAScripts\dbaLib.ps1 \\$sqlHostName\C$\DBAScripts -

force
}

"Creating schedule task on $sqlHostName ..."
SCHTASKS /Create /S $sqlHostName /RU $sqlUserName /RP $sqlPassword /SC

ONSTART ‘
/F /TN "Monitor_WindowsEventLogs_$sqlHostName" ‘
/TR "powershell.exe C:\DBAScripts\Monitor-WindowsEventLogs.ps1

$sleepseconds"

Start the scheduled task immediately
SCHTASKS /RUN /S $sqlHostName /TN "Monitor_WindowsEventLogs_$sqlHostName"

}

To install it on every host, run the following command:

C:\DBAScripts\Install-MonitorWindowsEventLogs.ps1

As shown in Figure 18-9, the script creates a schedule task Monitor_WindowsEventLogs on all the hosts
in our environment.

Figure 18-9

A sample alert e-mail sent by the scheduled task is shown in Figure 18-10. The detailed information about
the error is contained in the e-mail.

Monitoring SQL Ser ver Error Log
SQL Server error log provides critical information about any current or potential problems detected by
the SQL Server Database Engine. Problems are logged as errors with different error numbers followed by

433

Chapter 18: Monitoring SQL Server

detailed error descriptions. For example, if SQL Server is running out of locks, then an error with error
number 1204 is reported and the following description is recorded into the SQL Server error log:

Error: 1204, Severity: 19, State: 1
The SQL Server cannot obtain a LOCK resource at this time. Rerun your statement when
there are fewer active users or ask the system administrator to check the SQL Server
lock and memory configuration

Figure 18-10

This error stops the processing of the current statement and causes a rollback of the active transaction,
which needs to be brought to the DBA’s attention. The DBA can then change the ‘‘Locks’’ server configu-
ration option, or reexamine the server memory settings. Therefore, as a part of his or her administrative
responsibilities, the DBA needs to ensure that every server is being monitored and that critical SQL Server
errors are picked up in a timely fashion.

In Chapter 10, we created a function called Get-WMIEvent. The function creates an event subscription
called sqlevents. The event subscription registers to events specified by an event query and watches for
server events in an infinite loop until the Esc key is pressed manually. The manual stopping mechanism
is not useful for automatic and continuous multi-host monitoring. We will create a similar function called
Notify-WMIEvent without the stopping mechanism. This function also sends out an alert e-mail to the
DBA when an error occurs:

function Notify-WMIEvent([string] $eventQuery, [string] $namespace, [string[]]
$properties)
{

Initialize alert message variables
[String] $alertSubject="SQL Server Error at " + (Get-Date).ToString
(’yyyy-MM-dd hh:mm’)
[String] $alertMessage=""

If an event subscription called "sqlevents" already exists, unregister it first.

434

Chapter 18: Monitoring SQL Server

if (Get-EventSubscriber ‘sqlevents’ -ErrorAction SilentlyContinue) {
Unregister-Event "sqlevents"

}

Create an event subscription called "sqlevents" that registers to the events
specified by the $eventQuery under the $namespace.
Register-WmiEvent -Namespace $namespace -Query $eventQuery -SourceIdentifier
"sqlevents"

while ($true) {
Get new events
$objEvents=Get-Event –SourceIdentifier "sqlevents" -ErrorAction

SilentlyContinue

If new events arrive, then retrieve the event information.
if ($objEvents) {

Loop through the collection of new events
for ($i=0; $i -lt $objEvents.Count; $i++) {

Construct the alert message from the error event information.
$alertMessage = $objEvents[$i].SourceEventArgs.NewEvent |

Format-List $properties | Out-String

Send an alert e-mail.
Send-Email $smtpServer $fromAddress $toAddress $alertSubject

$alertMessage $smtpUserName $smtpPassword

Remove the event after its information has been processed.
Remove-Event -EventIdentifier $objEvents[$i].EventIdentifier -

ErrorAction SilentlyContinue
}

}
}
}

This function is added into the library file, dbaLib.ps1. We will now create another script to call this
Notify-WMIEvent function. The Monitor-SQLServerErrorLog.ps1 script will run continuously as a
scheduled task in the background, which starts every time the SQL Server host starts, and stops when
the host shuts down. The script will be saved under the directory C:\DBAScripts.

The Notify-WMIEvent function takes a WQL query, a namespace, and a list of selected properties of
events as parameters. We are interested only in errors with a severity level of 17 and higher, which
indicate software or hardware errors, and error messages from policy check (Severity 16). We can just
take the WQL query from the MonitorErrorLog.ps1 script in Chapter 10:

$query = "SELECT * FROM ERRORLOG WHERE Severity >= 16"

As shown in Chapter 10, the namespace is in the format root\Microsoft\SqlServer\ServerEvents\instance
name. For a default instance, the namespace is root\Microsoft\SqlServer\ServerEvents\MSSQLSERVER.

For a named instance CH0DE1, the namespace is root\Microsoft\SqlServer\ServerEvents\CH0DE1.
The instance name is available in the instanceName column in the Servers table from the inventory
database. We will pass the instance name as a parameter to the Monitor-SQLServerErrorLog.ps1 script
so we can easily monitor multiple instances on the same host using the same script:

C:\DBAScripts\Monitor-SQLServerErrorLog.ps1 MSSQLSERVER

435

Chapter 18: Monitoring SQL Server

What properties do we want to monitor? We certainly want to know the error number, severity, and
the text description that comes with the error. To identify the source of the error, we would also like to
know the computer name and instance name. We include all these properties of the ERRORLOG class in the
$selections variable and pass them to the Notify-WMIEvent function:

$selections= "ComputerName","SQLInstance","Error","Severity","TextData"

We also need to consider cluster cases. In a cluster, the monitoring script should run only on the active
node, as the SQL Server instance runs only on the active node. Therefore, we need to check whether the
SQL Server Database Engine service runs on the local host. Only when the service is running does
the monitoring begin. Let’s put the Monitor-SQLServerErrorLog.ps1 script together:

##
Initialize parameters
##
param (

[string]$instanceName
)

##
Source in our library file
##
. C:\DBAScripts\dbaLib.ps1

[String] $sqlServiceName=""

Get the Database Engine service name of the SQL Server instance $instanceName
if ($instanceName -eq ‘MSSQLSERVER’) {

$sqlServiceName=’MSSQLSERVER’
}
else {

$sqlServiceName=’MSSQL$’ + $instanceName
}

Only if the SQL Server instance is running, the monitoring starts.
if ((Get-Service $sqlServiceName).Status -eq ‘Running’) {

$query= "SELECT * FROM ERRORLOG WHERE Severity >= 16"
$sqlNamespace= "root\Microsoft\SqlServer\ServerEvents\$instanceName"
$selections= "ComputerName","SQLInstance", "Error","Severity","TextData"

Notify-WMIEvent $query $sqlNamespace $selections
}

To install this script as a scheduled task on the SQL Server hosts in our inventory, we create another script
to copy the Monitor-SQLServerErrorLog.ps1 script from the local host to every remote host, and create
a scheduled task to kick off the script at system startup on every host. The script to create a scheduled
task for a default instance looks like this, where P@ssw0rd is the password for PowerDomain\SqlService:

SCHTASKS /Create /S PowerPC /RU PowerDomain\SqlService /RP P@ssw0rd /SC ONSTART /TN
Monitor_SQLErrorLogs_MSSQLSERVER /TR "powershell.exe C:\DBASCRIPTS\Monitor-
SQLServerErrorLog.ps1 MSSQLSERVER"

436

Chapter 18: Monitoring SQL Server

In the case of a named instance, we just need to replace MSSQLSERVER in the preceding script with the
name of a named instance.

The following code example shows the installation script Install-MonitorErrorLogsTask.ps1. As you
can see, this script first gets the list of standalone hosts and cluster nodes, along with the SQL Server
instances on them. Then it copies the Monitor-SQLServerErrorLog.ps1 script, installs the scheduled
task Monitor_SQLErrorLogs, and starts the task on each host:

Source in our library file
##
. C:\DBAScripts\dbaLib.ps1

[String] $strQuerySql=""
[String] $sqlHostName=""
[String] $sqlInstanceName=""
[String] $sqlUserName="POWERDOMAIN\SqlService"
[String] $sqlPassword="P@ssw0rd" # Password for POWERDOMAIN\SqlService
[String] $localHostName=(Get-ChildItem Env:\ComputerName).Value

Get all the standalone hosts and cluster nodes with their instances in the
inventory.
$strQuerySql="SELECT h.hostName, s.instanceName
FROM dbo.Servers s
JOIN dbo.Hosts h on h.hostID=s.hostID
UNION
SELECT h.hostName, s.instanceName
FROM dbo.Servers s
JOIN dbo.Clusters c ON s.clusterID=c.clusterID
JOIN dbo.ClusterNodes cn ON c.clusterID = cn.clusterID
JOIN dbo.Hosts h ON cn.nodeID = h.hostID"

$sqlServers=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer -
Database $inventoryDatabase

Foreach ($sqlServer in $sqlServers) {
$sqlHostName=$sqlServer.hostName
$sqlInstanceName=$sqlServer.instanceName

Copy the Monitor-SQLServerErrorLog.ps1 script from the local host to
all the remote hosts.

If ($sqlHostName -ne $localHostName) {
If the C:\DBAScripts directory does not exist on the destination

host, create it.
If (-not (Test-Path \\$sqlHostName\C$\DBAScripts -pathType

container)) {
New-Item \\$sqlHostName\C$\DBAScripts -type directory |

Out-Null
}

Copy both the Monitor-SQLServerErrorLog.ps1 script and the library
file dbaLib.ps1.

Copy-Item C:\DBAScripts\Monitor-SQLServerErrorLog.ps1

437

Chapter 18: Monitoring SQL Server

\\$sqlHostName\C$\DBAScripts -force
Copy-Item C:\DBAScripts\dbaLib.ps1 \\$sqlHostName\C$\DBAScripts -

force
}

"Creating schedule task on $sqlHostName ..."
SCHTASKS /Create /S $sqlHostName /RU $sqlUserName /RP $sqlPassword /SC

ONSTART ‘
/F /TN "Monitor_SQLErrorLogs_$sqlInstanceName" ‘
/TR "powershell.exe C:\DBAScripts\Monitor-SQLServerErrorLog.ps1

$sqlInstanceName"

Start the scheduled task immediately
SCHTASKS /RUN /S $sqlHostName /TN "Monitor_SQLErrorLogs_$sqlInstanceName"

}

Before running the script, make sure you have the latest copy of Monitor-SQLServerErrorLog.ps1 under
C:\DBAScripts on the host from which you are running Install-MonitorErrorLogsTask.ps1. In addi-
tion, the execution policy of Windows PowerShell on every SQL Server host needs to be Unrestricted
(please see the section ‘‘Script Commands’’ in Chapter 2).

Execute the scripts to install the scheduled tasks:

C:\DBAScripts\Install-MonitorErrorLogsTask.ps1

Figure 18-11 shows that the script creates a scheduled task Monitor_WindowsEventLogs on all the hosts
in our environment.

Figure 18-11

438

Chapter 18: Monitoring SQL Server

Let’s test the scheduled tasks by creating an error with severity 18 by raising an error on the default
instance on PowerPC:

raiserror (’this is a test’, 16, 1) with log

As shown in Figure 18-12, the error picked up the scheduled task and an e-mail is sent to
yanpan@powerdomain.com with detailed information about the error.

Figure 18-12

Monitoring Blockings
If you are a DBA at your company, then it is very likely that you have been involved in troubleshooting
blocking and deadlock issues. I can’t count how many times I have received calls from BU users com-
plaining that their processes were running for an unusually long time. When I checked the processes
running on their server, I often saw that their processes were being blocked by other processes, waiting
for resources to be released.

DBAs should be proactive, rather than reactive, in dealing with blockings. We should not wait for the
blocking or deadlock problems to become noticeable to the end-users. We should monitor blockings and
deadlocks as they occur and take appropriate actions.

In this chapter, we created the Notify-WMIEvent function to monitor the SQL Server error log, which
takes a WQL query, a namespace, and a list of selected properties of events as parameters. Following
what we did to monitor the SQL Server error log, we will also create a monitoring script similar to the
Monitor-SQLServerErrorLog.ps1 script, and an installation script to install the script as a scheduled task
on each SQL Server host. In the new blocking monitoring script, we only need to change the parameter
values of the Notify-WMIEvent function to monitor blockings.

As you saw in Chapter 10, the trace event class BLOCKED_PROCESS_REPORT reports blocked processes. By
default, this class is disabled. To enable this class, we need to run sp_configure to configure the blocked

439

Chapter 18: Monitoring SQL Server

process threshold option. This option specifies the threshold, in seconds, at which blocked process reports
are generated. For example, to define the threshold as five minutes, set the value of the option to 300:

exec sp_configure ‘show advanced options’, 1
GO
RECONFIGURE
GO
exec sp_configure ‘blocked process threshold’, 300
GO
RECONFIGURE
GO

This setting change becomes effective immediately without a server restart. We will run this query to
configure all the servers in our inventory.

Now we need to set up the parameters of the Notify-WMIEvent function. We can take the WQL query
from Chapter 10:

$query = "SELECT * FROM BLOCKED_PROCESS_REPORT"

As the Monitor-SQLServerErrorLog.ps1 script, our new blocking monitoring script will accept the
SQL Server instance name as a parameter, and use the instance name to determine the namespace,
root\Microsoft\SqlServer\ServerEvents\instance name. The new Monitor-Blocking.ps1 script can be
used to monitor multiple instances on the same host using the same script:

C:\DBAScripts\Monitor-Blocking.ps1 $instanceName

Out of all the properties of the BLOCKED PROCESS REPORT event class, the computer name, SQL Server
instance name, database ID, and event post time provide when and where the event occurs. The Duration
property indicates how long (in milliseconds) the process was blocked. The TextData property is also
useful. It provides details about each process that participated in the blocking:

$selections= "ComputerName", "SQLInstance", "DatabaseID", "PostTime", "Duration",
"TextData"

Here is the Monitor-Blocking.ps1 script that will be copied to each SQL Server host and run on the host.
Note that this script is very similar to the Monitor-SQLServerErrorLog.ps1 script. The only differences
lie in the values of the parameters of the Notify-WMIEvent function, $query and $selections. You can
see how easy it is to reuse the scripts we created earlier and make minor changes to monitor different
event classes of interest:

##
Initialize parameters
##
param (

[string]$instanceName
)

##
Source in our library file
##
. C:\DBAScripts\dbaLib.ps1

440

Chapter 18: Monitoring SQL Server

[String] $sqlServiceName=""

Get the Database Engine service name of the SQL Server instance $instanceName
if ($instanceName -eq ‘MSSQLSERVER’) {

$sqlServiceName=’MSSQLSERVER’
}
else {

$sqlServiceName=’MSSQL$’ + $instanceName
}

Only if the SQL Server instance is running, the monitoring starts.
if ((Get-Service $sqlServiceName).Status -eq ‘Running’) {

$query = "SELECT * FROM BLOCKED_PROCESS_REPORT"
$sqlNamespace= "root\Microsoft\SqlServer\ServerEvents\$instanceName"
$selections= "ComputerName", "SQLInstance", "DatabaseID", "PostTime",

"Duration", "TextData"
Notify-WMIEvent $query $sqlNamespace $selections

}

As shown earlier in the section on monitoring the SQL Server error log, we need another script, Install-
MonitorBlocking.ps1, to copy the Monitor-Blocking.ps1 script to every host in our inventory and install
a scheduled task to kick off the script at system startup. The command to create a scheduled task looks
like this:

SCHTASKS /Create /S PowerPC /RU PowerDomain\SqlService /RP P@ssw0rd /SC ONSTART /TN
Monitor_Blocking_$instanceName /TR "powershell.exe D:\DBAScripts\Monitor-
Blocking.ps1 $instanceName"

Now we are ready to create our installation script, Install-MonitorBlocking.ps1. It is very similar to
the Install-MonitorErrorLogsTask.ps1 script. However, in addition to copying the monitoring script
and creating a scheduled task, Install-MonitorBlocking.ps1 also needs to configure the ‘‘blocked
process threshold’’ option. Therefore, the script must get the TCP/IP port number from the inventory:

##
Source in our library file
##
. C:\DBAScripts\dbaLib.ps1

[String] $strQuerySql=""
[String] $sqlHostName=""
[String] $sqlInstanceName=""
[String] $tcpPort=""
[String] $sqlClusterName=""
[String] $sqlUserName="POWERDOMAIN\SqlService"
[String] $sqlPassword="P@ssw0rd"
[String] $localHostName=(Get-ChildItem Env:\ComputerName).Value

$strQuerySql="SELECT h.hostName, s.instanceName, ‘’ as clusterName, tcpPort
FROM dbo.Servers s
JOIN dbo.Hosts h on h.hostID=s.hostID
UNION
SELECT h.hostName, s.instanceName, c.SQLClusterName as clusterName, tcpPort
FROM dbo.Servers s

441

Chapter 18: Monitoring SQL Server

JOIN dbo.Clusters c ON s.clusterID=c.clusterID
JOIN dbo.ClusterNodes cn ON c.clusterID = cn.clusterID
JOIN dbo.Hosts h ON cn.nodeID = h.hostID"

$sqlServers=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance
$inventoryServer -Database $inventoryDatabase

Here is the query to enable the "blocked process threshold" option
$strQuerySql="exec sp_configure ‘show advanced options’, 1
GO
RECONFIGURE
GO
exec sp_configure ‘blocked process threshold’, 300
GO
RECONFIGURE
GO"

Foreach ($sqlServer in $sqlServers) {
$sqlHostName=$sqlServer.hostName
$sqlInstanceName=$sqlServer.instanceName
$tcpPort=$sqlServer.tcpPort
$sqlClusterName=$sqlServer.clusterName

if ($sqlClusterName.Length -eq 0) {
"Changing the threshold on $sqlHostName,$tcpPort"
Invoke-Sqlcmd -Query $strQuerySql -ServerInstance

"$sqlHostName,$tcpPort" -Database master
}
else {

"Changing the threshold on $sqlClusterName,$tcpPort"
Invoke-Sqlcmd -Query $strQuerySql -ServerInstance

"$sqlClusterName,$tcpPort" -Database master
}

Install the Monitor-Blocking.ps1 script on all the hosts excluding the
current host that we are copying the script from.

If ($sqlHostName -ne $localHostName) {
If the C:\DBAScripts directory does not exist on the destination

host, create it.
If (-not (Test-Path \\$sqlHostName\C$\DBAScripts -pathType

container)) {
New-Item \\$sqlHostName\C$\DBAScripts -type directory

}

Copy both the Monitor-Blocking.ps1 script and the library file
dbaLib.ps1.

Copy-Item C:\DBAScripts\Monitor-Blocking.ps1
\\$sqlHostName\C$\DBAScripts -force

Copy-Item C:\DBAScripts\dbaLib.ps1 \\$sqlHostName\C$\DBAScripts -
force

}

"Creating schedule task on $sqlHostName ..."
SCHTASKS /Create /S $sqlHostName /RU $sqlUserName /RP $sqlPassword /SC

ONSTART ‘

442

Chapter 18: Monitoring SQL Server

/F /TN "Monitor_Blocking_$sqlInstanceName" ‘
/TR "powershell.exe C:\DBAScripts\Monitor-Blocking.ps1 $sqlInstanceName"

Start the scheduled task immediately
SCHTASKS /RUN /S $sqlHostName /TN "Monitor_Blocking_$sqlInstanceName"

}

Before running the script, make sure you have the latest copy of Monitor-Blocking.ps1 under
C:\DBAScripts on the host from which you are running Install-MonitorBlocking.ps1. In addition,
the execution policy of Windows PowerShell on every SQL Server host needs to be unrestricted (for
more information, see the Set-ExecutionPolicy cmdlet in the section ‘‘Script Commands’’ in Chapter 2).

Execute the scripts to install scheduled tasks:

C:\DBAScripts\Install-MonitorBlocking.ps1

As shown in Figure 18-13, the script configures the ‘‘blocked process threshold’’ option, and creates and
starts scheduled tasks on all the hosts in our environment.

Figure 18-13

In Chapter 10, you saw how to create a blocking using SQL queries. Let’s run the same queries to create
a blocking on the default instance on PowerPC and test the scheduled tasks. Open a query window in
SSMS and run the following query:

USE AdventureWorks2008

IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo].[Test]’)

443

Chapter 18: Monitoring SQL Server

AND type in (N’U’))
DROP TABLE [dbo].[Test]
GO

CREATE TABLE Test (i int)

INSERT Test SELECT 1
GO
BEGIN TRAN
UPDATE Test SET i = 1
WAITFOR DELAY ‘00:10:00’
COMMIT

This session holds exclusive locks for 10 minutes on the Test table.

In another query window in SSMS, run this query:

USE AdventureWorks2008
UPDATE Test SET i = 1

As shown in Figure 18-14, the blocking is picked up by Monitor-Blocking.ps1 and an alert e-mail is sent
to yanpan@powerdomain.com with detailed information about the blocking.

Monitoring Deadlocks
To monitor deadlocks, we just follow the preceding approach and create a new monitoring script,
Monitor-Deadlock.ps1, and an installation script to install the script as a scheduled task on each SQL
Server host. In the new blocking monitoring script, we only need to change the parameter values of the
Notify-WMIEvent function to monitor blockings. The DEADLOCK GRAPH event class contains the deadlock
events; therefore, the event query parameter is as follows:

$query = "SELECT * FROM DEADLOCK_GRAPH"

Like the previous monitoring scripts, our new deadlock monitoring script, Monitor-Deadlock.ps1, will
accept the SQL Server instance name as a parameter, and use the instance name to determine the names-
pace, root\Microsoft\SqlServer\ServerEvents\instance name. The Monitor-Deadlock.ps1 script can be
used to monitor multiple instances on the same host:

C:\DBAScripts\Monitor-Deadlock.ps1 $instanceName

Out of all the properties of the DEADLOCK GRAPH event class, the computer name, SQL Server instance
name, and start time provide when and where the event occurs. The TextData property provides details
about each process that participated in the deadlock:

$selections= "ComputerName", "SQLInstance", "StartTime", "TextData"

444

Chapter 18: Monitoring SQL Server

Figure 18-14

Here is the Monitor-Deadlock.ps1 script that will be copied to each SQL Server host and run on the host.
Note that this script is very similar to the Monitor-SQLServerErrorLog.ps1 and Monitor-Blocking.ps1
scripts. The only differences lie in the values of the parameters of the Notify-WMIEvent function, $query
and $selections:

##
Initialize parameters
##
param (

[string]$instanceName
)

##
Source in our library file
##

445

Chapter 18: Monitoring SQL Server

. C:\DBAScripts\dbaLib.ps1

[String] $sqlServiceName=""

Get the Database Engine service name of the SQL Server instance $instanceName
if ($instanceName -eq ‘MSSQLSERVER’) {

$sqlServiceName=’MSSQLSERVER’
}
else {

$sqlServiceName=’MSSQL$’ + $instanceName
}

Only if the SQL Server instance is running, the monitoring starts.
if ((Get-Service $sqlServiceName).Status -eq ‘Running’) {

$query = "SELECT * FROM DEADLOCK_GRAPH"
$sqlNamespace = "root\Microsoft\SqlServer\ServerEvents\$instanceName"
$selections= "ComputerName", "SQLInstance", "StartTime", "TextData"

Notify-WMIEvent $query $sqlNamespace $selections
}

We still need an installation script, Install-MonitorDeadlock.ps1, to copy the Monitor-Deadlock.ps1
script to every host in our inventory and install a scheduled task to kick off the script at system startup.
The command to create a scheduled task looks like this:

SCHTASKS /Create /S PowerPC /RU PowerDomain\SqlService /RP P@ssw0rd /SC ONSTART /TN
Monitor_Deadlock_$instanceName /TR "powershell.exe D:\DBAScripts\Monitor-
Deadlock.ps1 $instanceName"

Now we are ready to create our installation script Install-MonitorDeadlock.ps1. It is very simi-
lar to the Install-MonitorErrorLogsTask.psi script. The only differences lie in the copied script
name, Monitor-Deadlock.ps1, and the scheduled task name Monitor_Deadlock. The installation script,
Install-MonitorDeadlock.ps1, is shown here:

##
Source in our library file
##
. C:\DBAScripts\dbaLib.ps1

[String] $strQuerySql=""
[String] $sqlHostName=""
[String] $sqlInstanceName=""
[String] $sqlUserName="POWERDOMAIN\SqlService"
[String] $sqlPassword="P@ssw0rd" # Password for POWERDOMAIN\SqlService
[String] $localHostName=(Get-ChildItem Env:\ComputerName).Value

Get all the standalone hosts and cluster nodes with their instances in the
inventory.
$strQuerySql="SELECT h.hostName, s.instanceName
FROM dbo.Servers s
JOIN dbo.Hosts h on h.hostID=s.hostID
UNION
SELECT h.hostName, s.instanceName
FROM dbo.Servers s

446

Chapter 18: Monitoring SQL Server

JOIN dbo.Clusters c ON s.clusterID=c.clusterID
JOIN dbo.ClusterNodes cn ON c.clusterID = cn.clusterID
JOIN dbo.Hosts h ON cn.nodeID = h.hostID"

$sqlServers=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer -
Database $inventoryDatabase

Foreach ($sqlServer in $sqlServers) {
$sqlHostName=$sqlServer.hostName
$sqlInstanceName=$sqlServer.instanceName

Copy the Monitor-Deadlock.ps1 script from the local host to all the
remote hosts.

If ($sqlHostName -ne $localHostName) {
If the C:\DBAScripts directory does not exist on the destination

host, create it.
If (-not (Test-Path \\$sqlHostName\C$\DBAScripts -pathType

container)) {
New-Item \\$sqlHostName\C$\DBAScripts -type directory |

Out-Null
}

Copy both the Monitor-Deadlock.ps1 script and the library file
dbaLib.ps1.

Copy-Item C:\DBAScripts\Monitor-Deadlock.ps1
\\$sqlHostName\C$\DBAScripts -force

Copy-Item C:\DBAScripts\dbaLib.ps1 \\$sqlHostName\C$\DBAScripts -
force

}

"Creating schedule task on $sqlHostName ..."
SCHTASKS /Create /S $sqlHostName /RU $sqlUserName /RP $sqlPassword /SC

ONSTART ‘
/F /TN "Monitor_Deadlock_$sqlInstanceName" ‘
/TR "powershell.exe C:\DBAScripts\Monitor-Deadlock.ps1 $sqlInstanceName"

Start the scheduled task immediately
SCHTASKS /RUN /S $sqlHostName /TN "Monitor_Deadlock_$sqlInstanceName"

}

Execute the script to install scheduled tasks:

C:\DBAScripts\Install-MonitorDeadlock.ps1

As shown in Figure 18-15, the script creates and starts scheduled tasks on all the hosts in our
environment.

Let’s test the scheduled tasks by creating a deadlock on the default instance on PowerPC, as in
Chapter 10. Open a query window in SSMS and run this query:

USE AdventureWorks2008
GO

CREATE TABLE Test (i int)

447

Chapter 18: Monitoring SQL Server

INSERT Test SELECT 1
GO
BEGIN TRAN
UPDATE Test SET i = 1
WAITFOR DELAY ‘00:00:30’
UPDATE Test2 SET i = 1
WAITFOR DELAY ‘00:02:00’
COMMIT

DROP TABLE Test

Figure 18-15

This session holds exclusive locks on the Test table, and tries to update the Test2 table.

Within 30 seconds, in another SSMS query window, run this query:

USE AdventureWorks2008
GO

CREATE TABLE Test2 (i int)

INSERT Test2 SELECT 1
GO
BEGIN TRAN
UPDATE Test2 SET i = 1
WAITFOR DELAY ‘00:00:30’
UPDATE Test SET i = 1
WAITFOR DELAY ‘00:02:00’
COMMIT

DROP TABLE Test2

448

Chapter 18: Monitoring SQL Server

This session holds exclusive locks on the Test2 table, and tries to update the Test table. We have a
deadlock situation here because these two sessions are blocking each other and trying to update the table
the other process is holding.

As shown in Figure 18-16, the deadlock is picked up by the scheduled task Monitor Deadlock
MSSQLSERVER and an e-mail is sent to yanpan@powerdomain.com with detailed information about the
deadlock.

Figure 18-16

Please note that if you run both Monitor_Deadlock and Monitor_Blocking jobs at the same time,
depending on the blocked process threshold, Monitor_Blocking might pick up the deadlock before
Monitor_Deadlock is able to pick up the deadlock. Therefore, you might not see deadlock notification
e-mails. Therefore, please adjust the threshold accordingly.

Summary
An important part of a DBA’s job is monitoring not only the health of SQL Server instances, but also the
health of their hosts. Proactive monitoring ensures the smooth operation of your SQL Server environ-
ment, and reduces frustration and confusion for your end-users.

449

Chapter 18: Monitoring SQL Server

In this chapter, we have demonstrated some powerful monitoring scripts that implemented off-host mon-
itoring tasks, such as pinging hosts and checking SQL Server–related services; and on-host monitoring
tasks, such as monitoring Windows event logs, the SQL Server error log, and blockings and deadlocks.
The Notify-WMIEvent function created in this chapter utilizes the WMI provider for Server Events and
the new Eventing feature in Windows PowerShell 2.0 to capture SQL Server events. By simply changing
the event query and the properties passed to this function, we built monitoring scripts for different event
classes.

We also demonstrated how to install the monitoring scripts as scheduled tasks on SQL Server hosts. The
scripts created in this chapter can serve as templates for building your own DBA toolbox, and you can
easily customize them to monitor events you are interested in. In short, this chapter provides a simple
and feasible solution for enterprise monitoring.

The next chapter continues our exploration of monitoring as it relates to disk space usage, database files,
and backups.

450

Monitoring Disk Space
Usage, Database Files, and

Backups

In an enterprise environment, an unavoidable task is monitoring the free disk space on SQL server
hosts to ensure that no system or database drives are running low on space. In addition, the growth
of the database files needs to be monitored to ensure there is sufficient space on disks to accom-
modate future storage needs. It is better to plan ahead, rather than panic when you run out of disk
space. In this chapter, we will create extra tables in the inventory databases to hold space informa-
tion. This chapter also presents sample Windows PowerShell scripts that can be executed against
the list of servers stored in the inventory database to collect the space information.

Backup and recovery is one of the most important aspects of database administration. Important
information saved in a database needs to be protected against hardware, software, or human errors.
Therefore, you need to develop a backup and recovery plan, and monitor the database backups to
ensure conformance to the plan.

This chapter covers the following topics:

❑ Monitoring disk space usage

❑ Monitoring database file growth

❑ Monitoring backups

Monitoring Disk Space Usage
In Chapter 15, an inventory database named SQL Inventory was set up to hold information about
hosts, servers, and databases. We can add a DiskSpace table to the SQL Inventory database to hold
the information regarding disk space usage. SQL Server database files can reside on the local drive

Chapter 19: Monitoring Disk Space, Files, and Backups

only. Therefore, we will only store the space information of the local drives on every host in our inventory
in the DiskSpace table. The DiskSpace table includes the drive letter, total size of the drive, and free space
on the drive. In order to determine the composition of the space, it also includes the size of the space used
by each type of database file: data, log, FILESTREAM, and full text. The schema of the table is shown in
Table 19-1.

Table 19-1: Schema of the DiskSpace Table

Column DataType Description

hostID int ID of the host or active cluster node

drive Char(1) Drive letter, such as C, D, etc.

totalSize(KB) Bigint Total size of the drive

freeSpace(KB) Bigint Free space on the drive

total_datafile_size(KB) Bigint Total size of the data files on the drive

total_logfile_size(KB) Bigint Total size of the log files on the drive

total_filestream_size(KB) Bigint Total size of the FILESTREAM files on the drive

total_fulltext_size(KB) Bigint Total size of the full-text catalogs on the drive

createDate smalldatetime Date and time this disk space record was created

updateDate Smalldatetime Date and time this disk space record was last updated

The SQL script CreateDiskSpace.sql creates the DiskSpace table:

USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N’[dbo].[DiskSpace]’) AND type in (N’U’))
DROP TABLE [dbo].[DiskSpace]
GO
CREATE TABLE [dbo].[DiskSpace](
[hostID] [int],
[drive] [char](1) NOT NULL,
[totalSize(KB)] [bigint],
[freeSpace(KB)] [bigint],
[total_datafile_size(KB)] bigint,
[total_logfile_size(KB)] bigint,
[total_filestream_size(KB)] bigint,
[total_fulltext_size(KB)] bigint,
[createDate] [smalldatetime] NOT NULL default getDate(),
[updateDate] [smalldatetime] NOT NULL default getDate()
)
GO

452

Chapter 19: Monitoring Disk Space, Files, and Backups

To populate this table, we first query the Win32 LogicalDisk WMI class for a drive type of 3, which
means local drives. An example of this was already shown in Chapter 5 when we discussed the file
system. Run the following command against all the hosts in our inventory to get all the instances of the
Win32 LogicalDisk class:

Get-WmiObject -Class Win32_LogicalDisk -filter "DriveType=3" |
Select-Object DeviceID, FreeSpace | Format-Table -auto

Here is the script uspUpsertDiskspace.sql to create a stored procedure uspUpsertDiskSpace. This
stored procedure inserts a new drive record if the drive doesn’t exist in the table, or updates a drive
record if the drive already exists. Notice that only the first four columns of the DiskSpace table, which
reflect hostID, drive letter, total drive size, and free drive space, are populated:

USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N’[dbo].[uspUpsertDiskSpace]’) AND type in (N’P’, N’PC’))
DROP PROCEDURE [dbo].[uspUpsertDiskSpace]
GO
CREATE PROCEDURE [DBO].[uspUpsertDiskSpace]

@hostID int,
@drive char(1),
@totalSize bigint,
@freeSpace bigint

AS
DECLARE @ERRORCODE [int], @ERRMSG varchar(128)

-- If the drive already exists in the DiskSpace table, then perform an update.
IF exists (SELECT hostID FROM DiskSpace WHERE hostID=@hostID and drive=@drive)

UPDATE [dbo].[DiskSpace]
SET [totalSize(KB)]=@totalSize,

[freeSpace(KB)]=@freespace,
[updateDate] = GETDATE()

WHERE hostID=@hostID and drive=@drive
-- If the drive does not exist in the DiskSpace table, then perform an insertion.
ELSE

INSERT [dbo].[DiskSpace]
(hostID
, drive
, [totalSize(KB)]
, [freeSpace(KB)]
, createDate
, updateDate
)

VALUES(
@hostID
, @drive
, @totalSize
, @freeSpace
, GETDATE()

, GETDATE()
)

SET @ERRORCODE = @@ERROR

453

Chapter 19: Monitoring Disk Space, Files, and Backups

IF @ERRORCODE <> 0
BEGIN

SET @ERRMSG = ‘Upsert failed - ‘ + OBJECT_NAME(@@PROCID)
SET @ERRMSG = @ERRMSG + ‘ Error Code: ‘ + RTRIM(CONVERT(CHAR, @ERRORCODE))
RAISERROR (@ERRMSG, 16, 1)
RETURN (-1)

END
ELSE

RETURN (0)

GO

To update the next four columns of the DiskSpace table, we need to know how much space on each
drive is used for data files, log files, FILESTREAM, data and full-text catalogs. Because a host can con-
tain more than one SQL Server instance, we need to query every SQL Server instance on a host and
add up the space. For example, the following SQL query returns the space usage of each drive for an
instance:

USE master

SELECT drive, isNull([0],0) as [total_datafile_size], isNull([1],0) as
[total_logfile_size],
isNull([2],0) as [total_filestream_size], isNull([4],0) as [total_fulltext_size]
FROM

(SELECT LEFT(physical_name, 1) as drive, type, SUM(size * 8) as total_size
FROM sys.master_files
GROUP BY left(physical_name,1), type) AS SourceTable
PIVOT
(

SUM(total_size)
FOR type IN ([0], [1], [2], [4])
) AS PivotTable

The subquery selects from the sys.master files, which contains all the database files, groups the
files by drive and file type, and adds up the sizes of the database files. The available types are listed
here:

0 -Data files
1- Log files
2- FILESTREAM data
4- Fulltext catalogs

Next, the intermediate table is pivoted on the type column. The four type values become four column
headings, and we have four columns that contain total file size for each type by an instance.

We store disk space usage of SQL Server instances in a utility table DiskUsageByServer. After we go
through all the instances on all the hosts and save the drive usage of each instance, we can add up
the disk space of all the instances on a particular host to get the total usage for each drive on that
host.

Table 19-2 shows the schema of the utility table, DiskUsageByServer.

454

Chapter 19: Monitoring Disk Space, Files, and Backups

Table 19-2: Schema of the DiskUsageBy Server Table

Column DataType Description

hostID int ID of the host

drive Char(1) Drive letter, such as C, D, etc.

dataSize Bigint Total size of the data files on the drive

logSize Bigint Total size of the log files on the drive

filestreamSize Bigint Total size of the FILESTREAM files on the drive

fulltextSize Bigint Total size of the full-text catalogs on the drive

The following script, CreateDiskUsageByServer.sql, creates the DiskUsageByServer table:

USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N’[dbo].[DiskUsageByServer]’) AND type in (N’U’))
DROP TABLE [dbo].[DiskUsageByServer]
GO
CREATE TABLE [dbo].[DiskUsageByServer](
[hostID] [int],
[drive] [char](1) NOT NULL,
[dataSize] bigint,
[logSize] bigint,
[filestreamSize] bigint,
[fulltextSize] bigint)
GO

We also need a stored procedure to insert a drive record. Here is the uspInsertDiskUsageByServer.sql
script to create the stored procedure:

USE [SQL_Inventory]
GO
IF OBJECTPROPERTY(OBJECT_ID(N’[DBO].[uspInsertDiskUsageByServer]’), N’IsProcedure’)
= 1

DROP PROCEDURE [DBO].[uspInsertDiskUsageByServer]
GO
CREATE PROCEDURE [DBO].[uspInsertDiskUsageByServer]

@hostID int,
@drive char(1),
@dataSize bigint,
@logSize bigint,
@filestreamSize bigint,
@fulltextSize bigint

AS
DECLARE @ERRORCODE [int], @ERRMSG varchar(128)

455

Chapter 19: Monitoring Disk Space, Files, and Backups

INSERT [dbo].[DiskUsageByServer]
(hostID

, drive
, [dataSize]
, [logSize]
, [filestreamSize]
, [fulltextSize]

)
VALUES(

@hostID
, @drive
, @dataSize
, @logSize
, @filestreamSize
, @fulltextSize

)

SET @ERRORCODE = @@ERROR
IF @ERRORCODE <> 0
BEGIN

SET @ERRMSG = ‘Insert failed - ‘ + OBJECT_NAME(@@PROCID)
SET @ERRMSG = @ERRMSG + ‘ Error Code: ‘ + RTRIM(CONVERT(CHAR, @ERRORCODE))
RAISERROR (@ERRMSG, 16, 1)
RETURN (-1)

END
ELSE

RETURN (0)
GO

After we collect the disk space used by all the instances on all the hosts and populate the utility table, we
can group the data by host and drive, and add up the total size used for each database file type on each
drive of every host. Then we can update the DiskSpace table using this query:

UPDATE ds
SET [total_datafile_size(KB)]=du.dataSize, [total_logfile_size(KB)]=du.logSize,
[total_filestream_size(KB)]=du.streamSize, [total_fulltext_size(KB)]=du.fulltextSize

FROM DiskSpace ds
JOIN (SELECT hostID, drive, sum(dataSize) as dataSize, sum(logSize) as logSize,

sum(filestreamSize) as streamSize, sum(fulltextSize) as fulltextSize
FROM DiskUsageByServer
GROUP BY hostID, drive) du

ON ds.hostID=du.hostID and ds.drive=du.drive

For a cluster, the space used by SQL Server database files should be counted only on the active node, not
on the passive node. Therefore, we need to query the the NetBIOS name on which a SQL Server instance
is currently running, by running the following query:

SELECT SERVERPROPERTY(’ComputerNamePhysicalNetBIOS’)

In a cluster scenario, this query returns the computer name of the active node.

Putting the pieces together, here is the complete script for Update-DiskSpace.ps1. You can download
this script from the Wrox site for this book at www.wrox.com:

456

Chapter 19: Monitoring Disk Space, Files, and Backups

##
Source in our library file
##
. C:\DBAScripts\dbaLib.ps1

[String] $strQuerySql=""
[String] $strInsertSql=""
[String] $strUpsertSql=""
[String] $strUpdateSql=""

Empty the utility table DiskUsageByServer.
[String] $sqlQuerySql="TRUNCATE TABLE [dbo].[DiskUsageByServer];"

Invoke-Sqlcmd -Query $sqlQuerySql -ServerInstance $inventoryServer -Database
$inventoryDatabase

Gets all the SQL Server hosts.
$strQuerySql="SELECT hostID, hostName FROM Hosts"

$sqlhosts=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer
-Database $inventoryDatabase

Loop through the list of hosts.
Foreach ($sqlhost in $sqlhosts) {

$strUpsertSql=""

$sqlHostID=$sqlhost.hostID
$sqlHostName=$sqlhost.hostName

###
First step, for every host, gets all the local drives.
Insert into or Update the DiskSpace table with the total size and free space

of each drive on the host.

$devices=Get-WmiObject –computerName $sqlHostName -Class Win32_LogicalDisk -
filter "DriveType=3"

Foreach ($device in $devices) {
$strUpsertSql = $strUpsertSql + "exec uspUpsertDiskSpace " + $sqlHostID

+ ", ‘" ‘
+ $device.DeviceID.SubString(0,1) + "’, " + $device.Size/1024 + ", " +

$device.FreeSpace/1024 + ";`n"

}

$strUpsertSql
Invoke-Sqlcmd -Query $strUpsertSql -ServerInstance $inventoryServer -Database

$inventoryDatabase

###
Second step, query every instance on the host.
Insert into the DiskUsageByServer table with the space used for data files,

log files, FILESTREAM and full text catalogs on every instance.

457

Chapter 19: Monitoring Disk Space, Files, and Backups

$strInsertSql=""

Get the instances on a host.
The first SELECT gets standalone instances for a standalone host,
and the second SELECT gets clustered instances for a cluster node.
$strQuerySql="SELECT h.hostName as SQLNetworkName, s.tcpPort
FROM dbo.Servers s
JOIN dbo.Hosts h ON s.hostID= h.hostID
WHERE h.hostID=$sqlHostID
UNION
SELECT c.SQLClusterName as SQLNetworkName, s.tcpPort
FROM dbo.Servers s
JOIN dbo.Clusters c ON s.clusterID=c.clusterID
JOIN dbo.ClusterNodes cn ON c.clusterID = cn.clusterID
WHERE cn.nodeID = $sqlHostID"

$sqlServers=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer
-Database $inventoryDatabase

Loop through the list of instances on the host.
Foreach ($sqlServer in $SqlServers) {

if (!$sqlServer) { break }

$sqlNetworkName=$sqlServer.SQLNetworkName
$tcpPort=$sqlServer.tcpPort

Get the NetBIOS name on which the instance of SQL Server is currently
running.

In a cluster, it returns the host name of the active node.
$strQuerySql="SELECT SERVERPROPERTY(’ComputerNamePhysicalNetBIOS’) AS

hostName"

$physicalHost=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance
"$sqlNetworkName,$tcpPort" -Database master

If the host is a standalone host or the active node of a cluster, then
add a record

to the DiskUsageByServer table that associates the space used by the
instance with the host.

if ($physicalHost.hostName -ieq $sqlHostName) {

Get the information of how much space on all the drives is used
for data files, log files,

FILESTREAM and full text catalogs by the instance.
$strQuerySql="SELECT drive, isNull([0],0) as

[total_datafile_size], isNull([1],0) as [total_logfile_size],
isNull([2],0) as [total_filestream_size], isNull([4],0) as

[total_fulltext_size]
FROM

(SELECT LEFT(physical_name, 1) as drive, type, SUM(size * 8) as
total_size

FROM sys.master_files
GROUP BY left(physical_name,1), type) AS SourceTable
PIVOT

458

Chapter 19: Monitoring Disk Space, Files, and Backups

(
SUM(total_size)
FOR type IN ([0], [1], [2], [4])
) AS PivotTable;"

$results=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance
"$sqlNetworkName,$tcpPort" -Database master

Loop through the list of drives, and insert into the
DiskUsageByServer table.

foreach ($result in $results) {
$strInsertSql=$strInsertSql + "exec uspInsertDiskUsageByServer "

+ $sqlHostID + ", ‘" + $result.drive + "’, " ‘
+ $result.total_datafile_size + ", " + $result.total_

logfile_size + ", " ‘
+ $result.total_filestream_size + ", " +

$result.total_fulltext_size + ";`n"
}

}
}

if ($strInsertSql -ne "") {
$strInsertSql
Invoke-Sqlcmd -Query $strInsertSql -ServerInstance $inventoryServer -

Database $inventoryDatabase
}

}

Use the information in the DiskUsageByServer table to update the DiskSpace table.
$strUpdateSql="UPDATE ds
SET [total_datafile_size(KB)]=du.dataSize, [total_logfile_size(KB)]=du.logSize,
[total_filestream_size(KB)]=du.streamSize, [total_fulltext_size(KB)]=du.fulltextSize

FROM DiskSpace ds
JOIN (SELECT hostID, drive, sum(dataSize) as dataSize, sum(logSize) as logSize,

sum(filestreamSize) as streamSize, sum(fulltextSize) as fulltextSize
FROM DiskUsageByServer
GROUP BY hostID, drive) du

ON ds.hostID=du.hostID and ds.drive=du.drive"

Invoke-Sqlcmd -Query $strUpdateSql -ServerInstance $inventoryServer -Database
$inventoryDatabase

Run the script in our environment. Figure 19-1 shows the output.

C:\DBAScripts\Update-DiskSpace.ps1

Run this query in the SQL Inventory database:

SELECT h.hostName, ds.*
FROM dbo.DiskSpace ds JOIN dbo.Hosts h
ON ds.hostID=h.hostID

459

Chapter 19: Monitoring Disk Space, Files, and Backups

Figure 19-1

Figure 19-2 shows that the disk usage for each host has been populated.

Figure 19-2

460

Chapter 19: Monitoring Disk Space, Files, and Backups

Monitoring Database Files
As stated in the beginning of this chapter, it is important to monitor the size and growth of database
files to ensure that they have enough space to grow. To hold the database file space usage, we add a
DatabaseSpace table to the SQL Inventory database. The schema of the table is shown in Table 19-3.

Table 19-3: Schema of the DatabaseSpace Table

Column DataType Description

databaseID int ID of the database

dataSize(KB) Bigint Total size of the data files of the database

unallocatedData(KB) Bigint Unallocated space in the data files

maxDataSize(KB) Varchar(15) Maximum size of the data files

dataAutogrow Bit 0 – File is fixed size and will not grow
1 – File will grow automatically

logSize(KB) Bigint Total size of the log files of the database

unallocatedLog(KB) Bigint Unallocated space in the log files

maxLogSize(KB) Varchar(15) Maximum size of the log files

logAutogrow Bit 0 – File is fixed size and will not grow
1 – File will grow automatically

createDate smalldatetime Date and time this database space record was created

As you can see, the DatabaseSpace table indicates the total size of the data and log files, their maximum
size, whether they are allowed to grow, and their unallocated space. Here is the CreateDatabaseSpace.sql
script to create the DatabaseSpace table:

USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N’[dbo]
.[DatabaseSpace]’) AND type in (N’U’))
DROP TABLE [dbo].[DatabaseSpace]
go
CREATE TABLE [dbo].[DatabaseSpace](
[databaseID] [int],
[dataSize(KB)] bigint,
[unallocatedData(KB)] bigint,
[maxDataSize(KB)] varchar(15),
dataAutogrow bit,
[logSize(KB)] bigint,
[unallocatedLog(KB)] bigint,

461

Chapter 19: Monitoring Disk Space, Files, and Backups

[maxLogSize(KB)] varchar(15),
logAutogrow bit,
[createDate] [smalldatetime] NOT NULL default getDate()
)
GO

This table stores the space usage of each database. The unallocated space in the data files is calcu-
lated from allocation units. It is not always possible to know which database file an allocation unit
resides in because an allocation unit belongs to a data space (a filegroup or a partition on a filegroup),
not a file. If a filegroup has two files, then you don’t know what allocation unit is from which file in
the filegroup. You can certainly go down to the filegroup level if you want to know whether a huge
table or a partition will run out of space, but in most cases you only need to monitor on the database
level. Therefore, we consider all the data files to belong to a database in an entirety, and log files in an
entirety.

Now we create a stored procedure, uspInsertDatabaseSpace, to insert into this table. The complete
script, uspInsertDatabaseSpace.sql, to create the stored procedure is shown here:

USE [SQL_Inventory]
GO
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N’[dbo].[uspInsertDatabaseSpace]’) AND type in (N’P’, N’PC’))
DROP PROCEDURE [dbo].[uspInsertDatabaseSpace]
GO
CREATE PROCEDURE [DBO].[uspInsertDatabaseSpace]
@databaseID int,
@dataSize bigint,
@unallocatedData bigint,
@maxDataSize varchar(15),
@dataAutogrow bit,
@logSize bigint,
@unallocatedLog bigint,
@maxLogSize varchar(15),
@logAutogrow bit
AS
DECLARE @ERRORCODE [int], @ERRMSG varchar(128)

INSERT [dbo].[DatabaseSpace]
(databaseID

, [dataSize(KB)]
, [unallocatedData(KB)]
, [maxDataSize(KB)]
, [dataAutogrow]
, [logSize(KB)]
, [unallocatedLog(KB)]
, [maxLogSize(KB)]
, [logAutogrow]
, createDate

)
VALUES(

@databaseID
, @dataSize
, @unallocatedData

462

Chapter 19: Monitoring Disk Space, Files, and Backups

, @maxDataSize
, @dataAutogrow
, @logSize
, @unallocatedLog
, @maxLogSize
, @logAutogrow
, GETDATE()

)

SET @ERRORCODE = @@ERROR
IF @ERRORCODE <> 0

BEGIN
SET @ERRMSG = ‘Insert failed - ‘ + OBJECT_NAME(@@PROCID)
SET @ERRMSG = @ERRMSG + ‘ Error Code: ‘ + RTRIM(CONVERT(CHAR,

@ERRORCODE))
RAISERROR (@ERRMSG, 16, 1)
RETURN (-1)

END
ELSE

RETURN (0)

GO

For a database, the following script calculates the space allocated to data and log files, their maximum
size, and the autogrowth mode:

SET NOCOUNT ON

DECLARE @dataSize bigint, @reservedSize bigint, @maxDataSize varchar(15),
@dataAutogrow bit
DECLARE @logSize bigint, @logused decimal(3,1), @maxLogSize varchar(15),
@logAutogrow bit

-- Get the total space reserved for data pages.
SELECT @reservedSize=sum(a. total_pages)*8
FROM sys.allocation_units a
WHERE type in (1, 2, 3)

-- Get the total space used by data files.
-- Unallocated Space in the data files = Total size of data files - Total space
reserved for data pages
SELECT @dataSize=sum(convert(bigint, size))*8 FROM sys.database_files WHERE type=0

-- Since all the data files are considered in an entirety, if the max size of any of
the data files is set to Unlimited,
-- then the max size of data files is Unlimited. Otherwise, add up the max size of all
the data files.
IF (SELECT count(name) FROM sys.database_files WHERE (type = 0) and (max_size =
-1)) > 0

SELECT @maxDataSize = ‘Unlimited’
ELSE

SELECT @maxDataSize = convert(varchar(15), sum(convert(bigint, max_size))* 8)
FROM sys.database_files

463

Chapter 19: Monitoring Disk Space, Files, and Backups

WHERE (type = 0)

-- Since all the data files are considered in an entirety, if any of
the data files is set to autogrow,
-- then the data files are considered to be able to autogrow.
IF ((SELECT count(name) FROM sys.database_files WHERE (type = 0)
and (growth > 0))) > 0

SELECT @dataAutogrow =1
ELSE

SELECT @dataAutogrow =0

-- Get the total space used by log files.
SELECT @logSize=sum(size)*8 FROM sys.database_files WHERE type=1

-- Since all the log files are considered in an entirety, if the max size of any of the
log files is set to Unlimited,
-- then the max size of log files is Unlimited. Otherwise, add up the max size of
all the log files.
IF (SELECT count(name) FROM sys.database_files WHERE (type = 1) and (max_size =
-1)) > 0

SELECT @maxLogSize = ‘Unlimited’
ELSE

SELECT @maxLogSize = convert(varchar(15), sum(convert(bigint, max_size))* 8)
FROM sys.database_files
WHERE (type = 1)

-- Since all the log files are considered in an entirety, if any of the log files is
set to autogrow,
-- then the log files are considered to be able to autogrow.
IF ((SELECT count(name) FROM sys.database_files WHERE (type = 1) and
(growth > 0))) > 0

SELECT @logAutogrow =1
ELSE

SELECT @logAutogrow =0

CREATE TABLE #logspace
([Database Name] varchar(100),
[Log Size] decimal(15,2),
[Log Space Used (%)] decimal(3,1),
Status bit
)

-- Get the current size of the transaction log and the percentage of log space used
for the database
INSERT INTO #logspace EXEC(’DBCC SQLPERF(LOGSPACE) WITH NO_INFOMSGS ‘)
SELECT @logused=[Log Space Used (%)] FROM #logspace WHERE [Database Name] = db_name()
DROP TABLE #logspace

-- Consolidate the information of the database
SELECT @dataSize as dataSize, (@dataSize- @reservedSize) as unallocatedData,
@maxDataSize as maxDataSize, @dataAutogrow as dataAutogrow,
@logSize as logSize, convert(bigint, @logSize * (100-@logused)/100) as
unallocatedLog, @maxLogSize as maxLogSize, @logAutogrow as logAutogrow

464

Chapter 19: Monitoring Disk Space, Files, and Backups

Save the script into a SQL script file, dbspace.sql, under C:\DBAScripts. We will run this SQL script
against all the databases in our inventory in another script, Insert-DatabaseSpace.ps1, which you can
download from the Wrox website for this book:

###
Source in our library file
##
. C:\DBAScripts\dbaLib.ps1

[String] $strUpsertSql=""
[String] $strQuerySql=""
[String] $strScriptFile="C:\DBAScripts\dbspace.sql"

$strQuerySql="SELECT h.hostName as SQLNetworkName, s.tcpPort, db.databaseName,
db.databaseID
FROM dbo.Databases db JOIN dbo.Servers s on db.serverID=s.serverID
JOIN dbo.Hosts h on h.hostID=s.hostID
UNION
SELECT c.SQLClusterName as SQLNetworkName, s.tcpPort, db.databaseName, db.databaseID
FROM dbo.Databases db JOIN dbo.Servers s on db.serverID=s.serverID
JOIN dbo.Clusters c on c.clusterID=s.clusterID"

$sqlDatabases=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer -
Database $inventoryDatabase

Foreach ($sqlDatabase in $sqlDatabases) {
$strUpsertSql=""

$sqlNetworkName=$sqlDatabase.SQLNetworkName
$tcpPort=$sqlDatabase.tcpPort
$sqlDatabaseName=$sqlDatabase.databaseName
$sqlDatabaseID=$sqlDatabase.databaseID

#Gets the information of how much space on each drive is used for data files,
log files, file stream and full text catalogs.

$result=Invoke-Sqlcmd -InputFile $strScriptFile -ServerInstance
"$sqlNetworkName,$tcpPort" -Database $sqlDatabaseName

$strUpsertSql="exec p_Upsert_DatabaseSpace " + $sqlDatabaseID + ", " ‘
+ $result.dataSize + ", " + $result.unallocatedData + ", ‘" +

$result.maxDataSize + "’, " + $result.dataAutogrow + ", " ‘
+ $result.logSize + ", " + $result.unallocatedLog + ", ‘" +

$result.maxLogSize + "’, " + $result.logAutogrow + ";"

$strUpsertSql
Invoke-Sqlcmd -Query $strUpsertSql -ServerInstance $inventoryServer -Database

$inventoryDatabase

}

Run the script in our environment. Figure 19-3 shows the output.

C:\DBAScripts\Insert-DatabaseSpace.ps1

465

Chapter 19: Monitoring Disk Space, Files, and Backups

Now run the following query in the SQL Inventory database:

SELECT h.hostName, s.instanceName, db.databaseName, ds.*
FROM dbo.DatabaseSpace ds JOIN Databases db ON ds.databaseID = db.databaseID
JOIN dbo.Servers s ON db.serverID=s.serverID
JOIN dbo.Hosts h ON s.hostID=h.hostID

Figure 19-3

As shown in Figure 19-4, the space usage of each database has been collected.

Figure 19-4

466

Chapter 19: Monitoring Disk Space, Files, and Backups

Based on the information in these two tables, there are many ways to utilize the DiskSpace and
DatabaseSpace tables, including the following:

❑ Generate an exception report that either lists the drives and databases whose free space is under
a pre-defined threshold or raises an alert when the threshold is reached. If our threshold is 80%,
the corresponding SQL statements are as follows:

❑ When a drive has less than 20% free space for future growth of data, log, FILESTREAM,
and full-text data combined.

USE SQL_Inventory
GO
SELECT h.hostName, ds.drive
FROM dbo.DiskSpace ds
JOIN dbo.Hosts h ON ds.hostID = h.hostID
WHERE ([total_datafile_size(KB)] + [total_filestream_size(KB)] +
[total_fulltext_size(KB)] + [total_logfile_size(KB)]) * 0.2 > [freeSpace(KB)]

❑ When a database has less than 20% unallocated space for either data or log, and the data or
log cannot grow automatically.

USE SQL_Inventory
GO

SELECT h.hostName, s.instanceName, db.databaseName
FROM dbo.DatabaseSpace ds
JOIN dbo.Databases db ON ds.databaseID = db.databaseID
JOIN dbo.Servers s ON s.serverID = db.serverID
JOIN dbo.Hosts h ON h.hostID = s.hostID
WHERE (convert(dec(15,1),ds.[unallocatedData(KB)]) * 100.0 /
convert(dec(15,1),ds.[dataSize(KB)]) < 20) and (ds.dataAutogrow=0)
UNION
SELECT h.hostName, s.instanceName, db.databaseName
FROM dbo.DatabaseSpace ds
JOIN dbo.Databases db ON ds.databaseID = db.databaseID
JOIN dbo.Servers s ON s.serverID = db.serverID
JOIN dbo.Hosts h ON h.hostID = s.hostID
WHERE (convert(dec(15,1),ds.[unallocatedLog(KB)]) * 100.0 /
convert(dec(15,1),ds.[logSize(KB)]) < 20) and (ds.logAutogrow=0)

❑ When the maximum size of the data or log of a database allows less than 20% growth from
the current size, and the data or log cannot grow automatically.

USE SQL_Inventory
GO

SELECT h.hostName, s.instanceName, db.databaseName
FROM dbo.DatabaseSpace ds
JOIN dbo.Databases db ON ds.databaseID = db.databaseID
JOIN dbo.Servers s ON s.serverID = db.serverID
JOIN dbo.Hosts h ON h.hostID = s.hostID
WHERE (convert(dec(15,1),ds.[dataSize(KB)]) * 100.0 /

467

Chapter 19: Monitoring Disk Space, Files, and Backups

convert(dec(15,1),ds.[maxDataSize(KB)]) > 0.8) and (ds.dataAutogrow=0)
UNION
SELECT h.hostName, s.instanceName, db.databaseName
FROM dbo.DatabaseSpace ds
JOIN dbo.Databases db ON ds.databaseID = db.databaseID
JOIN dbo.Servers s ON s.serverID = db.serverID
JOIN dbo.Hosts h ON h.hostID = s.hostID
WHERE (convert(dec(15,1),ds.[logSize(KB)]) * 100.0 /
convert(dec(15,1),ds.[maxLogSize(KB)]) > 0.8) and (ds.logAutogrow=0)

❑ Collect the database space usage regularly and save it in the DatabaseSpace table. Based on the
historical data, you can calculate the rate at which the databases grow. Furthermore, by calculat-
ing how much the databases will grow in one year based on the current growth rate, you can do
capacity planning for each host.

Monitoring Backups
We all know that database backups are the bread-and-butter tasks of the database administrator
job. We cannot have any database running without backups. Without proper and prompt backups it is
not possible to recover a database in the event of data corruption or failures. Therefore, it is critical to
monitor the backups continuously.

As discussed in Chapter 14, every SQL Server instance should have an admin database. The admin
database holds objects, procedures, and functions that are related to SQL Server administration. We
are going to create in the admin database a stored procedure to find any databases that have not been
backed up in a certain number of minutes. Shown in the following example is the stored procedure
uspMonitorBackups, which queries the msdb.dbo.backupset table for the last backup date:

USE [admin]
GO

IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N’[dbo].[uspMonitorBackups]’) AND type in (N’P’, N’PC’))
DROP PROCEDURE [dbo].[uspMonitorBackups]
GO

CREATE PROCEDURE uspMonitorBackups @backuptype char(1), @numOfMinutes int
as
--D = Database
--I = Differential database
--L = Log
--F = File or filegroup
--G = Differential file
--P = Partial
--Q = Differential Partial
--Example: Exec admin.dbo.uspMonitorBackups ‘D’,24

declare @dbname varchar(2000)
select name as Databasename
from master.dbo.sysdatabases
where name not in (’tempdb’)
and name not in

468

Chapter 19: Monitoring Disk Space, Files, and Backups

(select distinct database_name
from msdb.dbo.backupset
group by database_name
having datediff(minute, max(backup_start_date),getdate()) < @numOfMinutes
)

This stored procedure accepts two parameters. The first parameter is the type of database backup you
want to monitor, and the second parameter is the number of hours.

The different backup types are as follows:

D = Database
I = Database Differential
L = Log
F = File or Filegroup
G = File Differential
P = Partial
Q = Partial Differential

Save the stored procedure in a SQL script file uspMonitorBackups.sql under C:\DBAScripts. You can
incorporate the creation of this stored procedure as one of the post-setup tasks in the SQL Server instal-
lation script or write a PowerShell script to install the stored procedure on every SQL Server in your
environment.

After this stored procedure has been created in the admin database on every SQL Server instance, you can
schedule a job to run regularly from the inventory server to execute the stored procedure on every server,
consolidate the results from every server in an exception report, and then send the exception report to
the DBA group. If a server has specific backup requirements, then you can schedule separate SQL Server
agent jobs on that server to check the specific requirements regularly. For either case, you can create a
PowerShell function called Check-Backups to accept the parameters for the stored procedure and execute
the stored procedure. Save the function in the library file C:\DBAScripts\dbaLib.ps1.

Function Check-Backups ([String] $instanceName, [String] $backuptype, [Int32]
$minutes)
{
[String] $strResult=""

$results=Invoke-Sqlcmd -Query "Exec dbo.uspMonitorBackups ‘$backuptype’, $minutes"
-ServerInstance $instanceName -Database "admin"

if ($results) {
for ($i=0; $i -lt $results.Count; $i++) {

if ($results[$i].Databasename) {
$strResult = $strResult + $results[$i].Databasename + "`n"

}
}

$strResult="The following databases on $instanceName have not been backed up in
$minutes minutes:`n" + $strResult

Write-Output $strResult
}

}

469

Chapter 19: Monitoring Disk Space, Files, and Backups

Notice we use Write-Output, not Write-Host, in the script so that the resultant string objects can be
further processed and consolidated into an exception report. Write-Host actually sends objects directly
to Out-Host behind the scenes, and no objects are left in the pipeline after Write-Host executes.

For example, if your company’s policy requires that at least one full database backup should be taken
every day, then you can schedule a PowerShell script to run every, say, twelve hours on the inventory
server to call the Check-Backups function and execute the uspMonitorBackups stored procedure against
every server, and create an exception report. The C:\DBAScripts\Monitor-Backups.ps1 script is shown
here:

##
Initialize parameters
##
param (

[String] $backupType = ‘D’, # The backup type to check. Defaults to Full
Database backups.

[Int32] $minutes = 1440, # The number of minutes in which backups have not been
taken. Defaults to 1440 minutes, 1 day.

[switch] $help
)

##
Source in our library file
##
. C:\DBAScripts\dbaLib.ps1

if ($help) {
"Usage: Monitor-Backups.ps1 [-backupType <string[]>] [-minutes <Int32>]"
exit 0

}

Get all the standalone and failover cluster instances
[String] $strQuerySql="SELECT h.hostName as SQLNetworkName, s.instanceName, s.tcpPort
FROM dbo.Servers s
JOIN dbo.Hosts h ON s.hostID= h.hostID
UNION
SELECT c.SQLClusterName as SQLNetworkName, s.instanceName, s.tcpPort
FROM dbo.Servers s
JOIN dbo.Clusters c ON s.clusterID=c.clusterID
JOIN dbo.ClusterNodes cn ON c.clusterID = cn.clusterID"

[String] $subject="Backup Exception Report"
[String] $exceptions=""
[String] $strResult=""

$sqlServers=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer -
Database $inventoryDatabase

Loop through the list of SQL Server instances and run the Check-Backups function
against each instance to get the backup exceptions.
Foreach ($sqlServer in $sqlServers) {

$sqlNetworkName=$sqlServer.SQLNetworkName

470

Chapter 19: Monitoring Disk Space, Files, and Backups

$sqlInstanceName=$sqlServer.instanceName
$tcpPort=$sqlServer.tcpPort

$strResult=""

if ($sqlInstanceName -ieq ‘MSSQLSERVER’) {
$strResult=(Check-Backups "$sqlNetworkName,$tcpPort" $backupType

$minutes)
if ($strResult -ne "") {

$exceptions=$exceptions + $strResult + "`n"
}

}
else {

$strResult=(Check-Backups "$sqlNetworkName\$sqlInstanceName,$tcpPort"
$backupType $minutes)

if ($strResult -ne "") {
$exceptions=$exceptions + $strResult + "`n"

}
}

}

Send the exceptions to the DBA group
if ($exceptions -ne "") {

"Exceptions found. Sending the exception report ..."
Send-Email $smtpServer $fromAddress $toAddress $subject $exceptions

$smtpUserName $smtpPassword
}
else {

"No exceptions found."
}

Now execute the script C:\DBAScripts\Monitor-Backups.ps1, as shown in Figure 19-5:

C:\DBAScripts\Monitor-Backups.ps1 D 1440

Figure 19-5

When the script is executed, it retrieves a list of databases that do not have a full database backup in the
past 1,440 minutes, i.e., 24 hours, and sends an e-mail, as shown in Figure 19-6.

If one business unit decides that the transaction logs on their server need to be backed up every 30
minutes to minimize data loss, you can schedule a SQL Server Agent job on that particular server to meet
that need. The job has one PowerShell step that runs the following command:

C:\DBAScripts\Monitor-Backups.ps1 L 30

Figure 19-7 shows the job and its step.

471

Chapter 19: Monitoring Disk Space, Files, and Backups

Figure 19-6

Figure 19-7

472

Chapter 19: Monitoring Disk Space, Files, and Backups

Summary
As a DBA, you never want your SQL Server to run out of space. When that happens, the server freezes
and user processes stop. In no time, your phone rings and frustrated users are on the other end of the line.
Therefore, it is important to monitor free space on local drives. We have discussed how to monitor disk
space usage. When a database does not have enough free space and cannot grow for any reason, user
processes that insert data into the database stop as well. You have seen in this chapter how to monitor
space at the database level.

Backups are the lifeline of a database. If a database becomes corrupted, most of the time you can only
rely on backups to recover the database. This chapter described how to monitor backups of all types.

In the next chapter we will define SQL Server policies to enforce SQL Server standards automatically,
which makes the DBA’s life easier.

473

Definin Policies

Policy-Based Management is a new feature in SQL Server 2008 that helps with SQL Server
administration. It enables database administrators to manage SQL Server instances by intent
through clearly defined policies, thereby reducing the potential for administrative errors. Policies
can be applied against a group of servers, thus improving the scalability of monitoring and
administration.

In this chapter, we will use the same class to create two exemplary policies and install them on
the SQL Servers in our environment. These two policies actually implement the standard that was
defined in Chapter 14. One of the policies we will discuss enforces a stored procedure naming
convention. The other policy ensures that both the Auto Shrink and the Auto Close options are set
to off. This chapter goes on to discuss the value of both of these policies.

Stored Procedure Naming Convention Policy
Chapter 12 explained how to define policies using the SMO class Microsoft.SqlServer
.Management.Dmf. We created a condition called ‘‘No server access’’ and then we defined a policy
called Domain guest cannot access server, whereby we applied the condition to prevent the
domain guest login POWERDOMAIN\Guest from accessing SQL Server. We are going to use the
same class to define policies and conditions in this chapter.

In Chapter 14, one of the SQL Server standards that we defined involves the stored procedure
naming conventions. Remember that stored procedure names should describe the work they do
and be prefixed with ‘‘usp.’’ Use a verb abbreviation to describe the work, such as Insert, Delete,
Update, Select, Upsert, or Get.

This convention doesn’t apply to system databases because the system stored procedures clearly
have more free-form names. However, it clearly separates stored procedures from other types of
database objects, and ensures that stored procedure names are easy to follow. We would like to
apply this naming convention to the admin database and ensure that all the stored procedures
created for database administration purposes conform to the naming convention.

Chapter 20: Definin Policies

To do that, we need to create a condition Stored Procedure Name to specify the stored procedure naming
convention. The expression in the condition should look like this:

(@Name LIKE ‘usp%’)

We also need to create another condition called admin database to restrict the policy to apply to only the
admin database. We will apply this condition to the object set of the new policy.

The function to create the policy is shown in the following example. The first parameter, $pNetworkName,
is either the host name of a standalone SQL Server instance or the SQL Server cluster name of a failover
cluster instance. The second parameter is the instance name. The third parameter is the TCP/IP port on
which the instance is listening.

Function CreateStoredProcNamingConventionPolicy([String] $pNetworkName, [String]
$pInstanceName, [String] $pTcpPort)
{
$sqlConnection=New-Object System.Data.SqlClient.SqlConnection
$sqlConnection.ConnectionString="Server=$pNetworkName,$pTcpPort;Database=master;
Integrated Security=True"
$storeConnection=New-Object
Microsoft.SqlServer.Management.Sdk.Sfc.SqlStoreConnection($sqlConnection)
$store=New-Object Microsoft.SqlServer.Management.Dmf.PolicyStore ($storeConnection)

if (Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName\Policies |
Where-Object {$_.Name -eq ‘Stored Procedure Naming Convention’}) {

"Dropping the existing ‘Stored Procedure Naming Convention’ policy from the
instance $pInstanceName on $pNetworkName ..."

(Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName\
Policies | Where-Object {$_.Name -eq ‘Stored Procedure Naming Convention’}).Drop()
}
if (Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName\Conditions
| Where-Object {$_.Name -eq ‘Stored Procedure Name’}) {

"Dropping the existing ‘Stored Procedure Name’ condition from the
instance $pInstanceName on $pNetworkName"

(Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName\
Conditions | Where-Object {$_.Name -eq ‘Stored Procedure Name’}).Drop()
}
if (Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName\ObjectSets
| Where-Object {$_.Name -eq ‘Stored Procedure Naming Convention_ObjectSet’}) {

"Dropping the existing object set ‘Stored Procedure Naming
Convention_ObjectSet’ from the instance $pInstanceName on $pNetworkName ..."

(Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName
\ObjectSets | Where-Object {$_.Name -eq ‘Stored Procedure Naming
Convention_ObjectSet’}).Drop()
}
if (Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName
\Conditions | Where-Object {$_.Name -eq "admin database"}) {

"Dropping the existing ‘admin database’ condition from the instance
$pInstanceName on $pNetworkName ..."

(Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName
\Conditions | Where-Object {$_.Name -eq "admin database"}).Drop()
}

476

Chapter 20: Definin Policies

#Create "Stored Procedure Name" condition
"Creating the ‘Stored Procedure Name’ condition on the instance $pInstanceName on
$pNetworkName ..."
$condition=New-Object Microsoft.SqlServer.Management.Dmf.Condition ($store,
‘Stored Procedure Name’)
$operator=New-Object Microsoft.SqlServer.Management.Dmf.ExpressionNodeOperator
("LIKE", "@Name", "’usp%’")
$condition.ExpressionNode=$operator
$condition.Facet=’StoredProcedure’
$condition.Create() | Out-Null

#Create "admin database" condition
"Creating the ‘admin database’ condition on the instance $pInstanceName on
$pNetworkName ..."
$condition2=New-Object Microsoft.SqlServer.Management.Dmf.Condition ($store,
"admin database")
$operator=New-Object Microsoft.SqlServer.Management.Dmf.ExpressionNodeOperator
("EQ", "@Name", "’admin’")
$condition2.ExpressionNode=$operator
$condition2.Facet=’Database’
$condition2.Create() | Out-Null

Create an object set object that includes every stored procedure in the admin
database
"Creating the object set ‘Stored Procedure Naming Convention_ObjectSet’ on the
instance $pInstanceName on $pNetworkName ..."
$objectSet=New-Object Microsoft.SqlServer.Management.Dmf.ObjectSet($store,
‘Stored Procedure Naming Convention_ObjectSet’)
$objectSet.Facet="StoredProcedure"
$targetSet=$objectSet.TargetSets["Server/Database/StoredProcedure"]
$targetSet.SetLevelCondition($targetSet.GetLevel("Server/Database"),
"admin database") | Out-Null
$targetSet.Enabled=1
$objectSet.Create() | Out-Null

Create "Stored Procedure Naming Convention" policy. The execution mode of this
policy is set to "On Change - Prevent".
"Creating the ‘Stored Procedure Naming Convention’ policy on the instance
$pInstanceName on $pNetworkName ..."
$policy=New-Object Microsoft.SqlServer.Management.Dmf.Policy ($store,
‘Stored Procedure Naming Convention’)
$policy.Condition=$condition.Name
$policy.ObjectSet=$objectSet.Name
$policy.AutomatedPolicyEvaluationMode="Enforce"
$policy.Enabled=1
$policy.Create() | Out-Null

Confirm the policy has been created correctly.
if (Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName\Policies |
Where-Object {$_.Name -eq ‘Stored Procedure Naming Convention’}) {

Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName
\Policies | Where-Object {$_.Name -eq ‘Stored Procedure Naming Convention’} `

| Select AutomatedPolicyEvaluationMode, Condition, Enabled, ID, IdentityKey,

477

Chapter 20: Definin Policies

Name, ObjectSet, Parent, CreatedBy, CreateDate
}
else {

"Failed to create ‘Stored Procedure Naming Convention’ policy on the instance
$pInstanceName on $pNetworkName."
}

}

Now we just need another piece of code to retrieve all the servers from the inventory, and then connect to
every server and install the ‘‘Stored Procedure Naming Convention’’ policy using the preceding function.
Here is the code:

######################## MAIN BODY ##################################
[String] $sqlNetworkName=""
[String] $sqlInstanceName=""
[String] $tcpPort=""

$strQuerySql="SELECT h.hostName as SQLNetworkName, s.instanceName, s.tcpPort
FROM dbo.Servers s
JOIN dbo.Hosts h ON s.hostID= h.hostID
UNION
SELECT c.SQLClusterName as SQLNetworkName, s.instanceName, s.tcpPort
FROM dbo.Servers s
JOIN dbo.Clusters c ON s.clusterID=c.clusterID
JOIN dbo.ClusterNodes cn ON c.clusterID = cn.clusterID"

Get all the SQL Server instances from the inventory
$sqlServers=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer
-Database $inventoryDatabase

Loop through the list of SQL Server instances and create the "Stored Procedure
Naming Convention" policy on each instance.
if ($sqlServers) {

Foreach ($sqlServer in $sqlServers) {
$sqlNetworkName=$sqlServer.SQLNetworkName
if ($sqlServer.instanceName -ieq ‘MSSQLSERVER’) {

$sqlInstanceName="default"
}
else {

$sqlInstanceName=$sqlServer.instanceName
}
$tcpPort=$sqlServer.tcpPort

#Create the "Stored Procedure Naming Convention" policy
CreateStoredProcNamingConventionPolicy $sqlNetworkName

$sqlInstanceName $tcpPort
}

}

The complete script is Install-StoredProcNamingConventionPolicy.ps1. You can download the script
from the website for this book at www.wrox.com. Execute this script to install the policy on every SQL
Server in the inventory.

C:\DBAScripts\Install-StoredProcNamingConventionPolicy.ps1

478

Chapter 20: Definin Policies

Figure 20-1 shows the output from running the script in our environment.

Figure 20-1

Note that you need to ensure that the SQL Server Browser service is running on the remote computer if
you get the following warning message:

WARNING: ‘CH0DE1’ not available: Failed to connect to server . --> A network-related
or instance-specific error occurred while establishing a connection to SQL Server.
The server was not found or was not accessible. Verify that the instance name is
correct and that SQL Server is configured to allow remote connections. (provider:
SQL Network Interfaces, error: 26 – Error Locating Server/Instance Specified)

To see this policy in action, let’s try to create a stored procedure called dba_MonitorBackups in the admin
database on the default instance, POWERPC. The policy will prevent the stored procedure from being
created:

USE admin
GO
CREATE PROCEDURE dba_MonitorBackups @backuptype char(1), @numOfMinutes int
as

declare @dbname varchar(2000)
select name as Databasename
from master.dbo.sysdatabases
where name not in (’tempdb’)

479

Chapter 20: Definin Policies

and name not in
(select distinct database_name
from msdb.dbo.backupset
group by database_name
having datediff(minute, max(backup_start_date),getdate()) < @numOfMinutes
)

As shown in Figure 20-2, the execution failed with the following error message:

Policy ‘Stored Procedure Naming Convention’ has been violated by
‘SQLSERVER:\SQL\POWERPC\DEFAULT\Databases\admin\StoredProcedures
\dbo.dba_MonitorBackups’.
This transaction will be rolled back.
Policy condition: ‘@Name LIKE ‘usp%’’
Policy description: ‘’
Additional help: ‘’ : ‘’
Statement: ‘CREATE PROCEDURE dba_MonitorBackups @backuptype char(1), @numOfMinutes
int
as

declare @dbname varchar(2000)
select name as Databasename
from...’.
Msg 3609, Level 16, State 1, Procedure sp_syspolicy_dispatch_event, Line 65
The transaction ended in the trigger. The batch has been aborted.

Therefore, the Stored Procedure Naming Convention policy prevents the stored procedure
dba_MonitorBackups from being created because its name does not comply with the policy.

Auto Close and Auto Shrink Off Policy
Auto_Close and Auto_Shrink are two options you never want to enable on a production database.

When Auto_Close is set to On, the database is shut down automatically when no one connects to it and
its resources are freed. When a user tries to use the database again, the database regains resources and
reopens. On a production database, which is regularly accessed by users, frequent closing and reopening
of the database causes delays for the users. The overhead of closing and reopening the database can be
significant, even affecting performance. When Auto_Close is set to On, you can see messages like the one
below repeat in the SQL Server error logs, indicating reopenings of the database :

2008-07-20 08:24:31.25 spid51 Starting up database ‘MNHOST’.

When Auto_Shrink is set to On, SQL Server automatically shrinks a database file when more than 25
percent of the space in the database file is unused. Database shrinking hogs CPU. In addition, if the file
size is large, it can take minutes or even hours to shrink the file. Users will notice slowed performance
while the shrinking is in progress. Even in a development server, enabling these two options rarely
provides benefits. Therefore, it is important for the DBA to ensure that both options are set to Off on all
databases.

480

Chapter 20: Definin Policies

Figure 20-2

The following function creates a policy called ‘‘Database Auto Options Disabled’’ to force every database
on a server to disable both options. Similar to the CreateStoredProcNamingConventionPolicy function
shown earlier, the first parameter, $pNetworkName, is either the host name of a standalone SQL Server
instance or the SQL Server cluster name of a failover cluster instance. The second parameter is the
instance name. The third parameter is the TCP/IP port on which the instance is listening:

Function CreateAutoOptionsOffPolicy([String] $pNetworkName, [String] $pInstanceName,
[String] $pTcpPort)
{

$sqlConnection=New-Object System.Data.SqlClient.SqlConnection
$sqlConnection.ConnectionString="Server=$pNetworkName,$pTcpPort;Database=master;
Integrated Security=True"
$storeConnection=New-Object Microsoft.SqlServer.Management.Sdk.Sfc

481

Chapter 20: Definin Policies

.SqlStoreConnection($sqlConnection)
$store=New-Object Microsoft.SqlServer.Management.Dmf.PolicyStore ($storeConnection)

if (Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName\Policies |
Where-Object {$_.Name -eq ‘Database Auto Options Disabled’}) {

"Dropping the existing ‘Database Auto Options Disabled’ policy from the
instance $pInstanceName on $pNetworkName ..."

(Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName
\Policies | Where-Object {$_.Name -eq ‘Database Auto Options Disabled’}).Drop()
}
if (Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName\Conditions
| Where-Object {$_.Name -eq ‘Auto Options Disabled’}) {

"Dropping the the existing Auto Options Disabled condition from the instance
$pInstanceName on $pNetworkName ..."

(Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName
\Conditions | Where-Object {$_.Name -eq ‘Auto Options Disabled’}).Drop()
}
if (Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName\ObjectSets
| Where-Object {$_.Name -eq ‘Database Auto Options Disabled_ObjectSet’}) {

"Dropping the existing ‘Database Auto Options Disabled_ObjectSet’ object set
from the instance $pInstanceName on $pNetworkName ..."

(Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName
\ObjectSets | Where-Object {$_.Name -eq ‘Database Auto Options
Disabled_ObjectSet’}).Drop()
}

#Create "Auto Options Disabled" condition
"Creating ‘Auto Options Disabled’ condition on the instance $pInstanceName on
$pNetworkName ..."
$condition=New-Object Microsoft.SqlServer.Management.Dmf.Condition ($store,
‘Auto Options Disabled’)
$operator=New-Object Microsoft.SqlServer.Management.Dmf.ExpressionNodeOperator
("AND", "@AutoClose = False()", "@AutoShrink = False()")
$condition.ExpressionNode=$operator
$condition.Facet=’IDatabaseOptions’
$condition.Create() | Out-Null

Create an object set object that includes every database.
"Creating object set on the instance $pInstanceName on $pNetworkName ..."
$objectSet=New-Object Microsoft.SqlServer.Management.Dmf.ObjectSet($store, ‘Database
Auto Options Disabled_ObjectSet’)
$objectSet.Facet="IDatabaseOptions"
$targetSet=$objectSet.TargetSets["Server/Database"]
$targetSet.Enabled=1
$objectSet.Create() | Out-Null

Create "Database Auto Options Disabled" policy. The execution mode of this policy is
set to "On Change - Log Only".
"Creating ‘Database Auto Options Disabled’ policy on the instance $pInstanceName on
$pNetworkName ..."
$policy=New-Object Microsoft.SqlServer.Management.Dmf.Policy ($store, ‘Database Auto
Options Disabled’)
$policy.Condition=$condition.Name
$policy.ObjectSet=$objectSet.Name

482

Chapter 20: Definin Policies

$policy.AutomatedPolicyEvaluationMode="CheckOnChanges"
$policy.Enabled=1
$policy.Create() | Out-Null

Confirm the policy has been created correctly.
if (Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName\Policies |
Where-Object {$_.Name -eq ‘Database Auto Options Disabled’}) {

Get-ChildItem -path SQLSERVER:\SQLPolicy\$pNetworkName\$pInstanceName
\Policies | Where-Object {$_.Name -eq ‘Database Auto Options Disabled’} `

| Select AutomatedPolicyEvaluationMode, Condition, Enabled, ID, IdentityKey,
Name, ObjectSet, Parent, CreatedBy, CreateDate
}
else {

"Failed to create ‘Database Auto Options Disabled’ policy on the instance
$pInstanceName on $pNetworkName."
}

}

Needed now is another piece of code to retrieve all the servers from the inventory and then connect
to every server and install the ‘‘Database Auto Options Disabled’’ policy using the preceding
function:

######################## MAIN BODY ##################################
[String] $sqlNetworkName=""
[String] $sqlInstanceName=""
[String] $tcpPort=""

$strQuerySql="SELECT h.hostName as SQLNetworkName, s.instanceName, s.tcpPort
FROM dbo.Servers s
JOIN dbo.Hosts h ON s.hostID= h.hostID
UNION
SELECT c.SQLClusterName as SQLNetworkName, s.instanceName, s.tcpPort
FROM dbo.Servers s
JOIN dbo.Clusters c ON s.clusterID=c.clusterID
JOIN dbo.ClusterNodes cn ON c.clusterID = cn.clusterID"

Get all the SQL Server instances from the inventory
$sqlServers=Invoke-Sqlcmd -Query $strQuerySql -ServerInstance $inventoryServer
-Database $inventoryDatabase

Loop through the list of SQL Server instances and create the "Database Auto Options
Disabled" policy on each instance.
if ($sqlServers) {

Foreach ($sqlServer in $sqlServers) {
$sqlNetworkName=$sqlServer.SQLNetworkName
if ($sqlServer.instanceName -ieq ‘MSSQLSERVER’) {

$sqlInstanceName="default"
}
else {

$sqlInstanceName=$sqlServer.instanceName
}
$tcpPort=$sqlServer.tcpPort

483

Chapter 20: Definin Policies

#Create the "Database Auto Options Disabled" policy
CreateAutoOptionsOffPolicy $sqlNetworkName $sqlInstanceName $tcpPort

}
}

The complete script is in Install-AutoOptionsOff.ps1. Execute this script to install the policy on every
SQL Server in the inventory:

C:\DBAScripts\Install-AutoOptionsOff.ps1

Figure 20-3 shows the output from running the script in our environment.

Figure 20-3

If any database violates the policy, an error message with an error number of 34053 will be logged to the
SQL Server Error log and the Application log. For example, if you try to enable the AutoClose option on
the admin database, then you will get the following message in the SQL Server Error log:

2009-02-12 23:14:52.23 spid33s Error: 34053, Severity: 16, State: 1.
2009-02-12 23:14:52.23 spid33s Policy ‘Database Auto Options Disabled’ has been
violated by target ‘SQLSERVER:\SQL\POWERPC\DEFAULT\Databases\admin’.

484

Chapter 20: Definin Policies

If you allow SQL Server to write to the Application log, then you’ll receive the following error message
in the Application log:

Policy ‘Database Auto Options Disabled’ has been violated by target ‘SQLSERVER:\SQL
\POWERPC\DEFAULT\Databases\admin’.

Errors logged into the SQL Server Error log and the Application log will be picked up by the monitoring
mechanism discussed in Chapter 18 (see ‘‘Monitoring SQL Server Error Logs’’ and ‘‘Monitoring Windows
Event Logs’’).

Summary
Policy-Based Management enables you to transform policies and standards defined on paper to SQL
Server policies at the server and database level. In this chapter, you learned how to use two policies
to automatically enforce two standards that were defined in Chapter 14 (one for the stored procedure
naming convention and the other for disabling the Auto_Close and Auto_Shrink options). You also
learned how to use PowerShell scripts to mass deploy policies on all the servers in the inventory. You
can customize the scripts shown in this chapter to create your own company policies, and thus reduce
the need for manual auditing and enforcement. The next chapter covers another DBA responsibility:
generating DDL scripts for database objects.

485

Generating Database
Scripts

Generating Data Definition Language (DDL) scripts for a database and its objects is also a SQL
Server database administration task. Generating such scripts is very useful for comparing changes
in the DDLs between two different dates. It also helps in copying the schema and objects from one
server to another. This chapter covers generating DDL scripts for the following:

❑ Databases

❑ Schemas

❑ User-defined data types

❑ Tables

❑ User views

❑ Stored procedures

❑ Functions

❑ XML schemas

❑ Users

Scripting Databases
Throughout this chapter you will use the .NET-based object library SMO. You learned how to write
SMO programs in Windows PowerShell in Chapter 13, and now you will use two major SMO classes
in this chapter:

❑ Microsoft.SqlServer.Management.Smo.Scripter

❑ Microsoft.SqlServer.Management.Smo.Server

Chapter 21: Generating Database Scripts

For some tasks, such as scripting stored procedures, you will also be using the SMO class Microsoft
.SqlServer.Management.Smo.StoredProcedure.

This chapter describes how to use SQL Server Management Objects (SMO) to script databases and its
objects. All the scripts in this chapter store the SQL script files generated to a directory named C:\scdata.
Let’s first create this directory:

New-Item -Path C:\ -Name scdata -Type directory

Create the following C:\DBAScripts\Script-Db.ps1 script. This script generates a DDL statement that
takes three parameters: a server name, a database, and a file path. The server name indicates where the
database resides. The file path points to the file where we are going to store the generated DDL for the
database.

The following example first loads the SMO assembly file. It then creates a SMO Server object, $srv, and
a Scripter object, $MyScripter. Then it connects to the database and uses the Script method to generate
a script, storing that to a variable $scrContent. Then it adds the "Go" statement to every string that
was generated by the script method and stores it to the variable $scrContent2. Finally it generates the
filename based on the current timestamp, using the Get-Date cmdlet to get a System.DateTime object and
querying the object’s properties, such as year, month, and day, and exporting the content of the variable
$scrContent to the file.

#===
#
NAME: Script-Db.ps1
#
AUTHOR: Yan and MAK
DATE : 5/1/2008
#
COMMENT: This script generates DDL statement for the given database
#===

param
(
[string] $SQLServername,
[string] $Databasename,
[string] $filepath

)
[reflection.assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") | Out-Null
$MyScripter=New-Object ("Microsoft.SqlServer.Management.Smo.Scripter")
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" $SQLServername
$MyScripter.Server=$srv

$scrcontent=$MyScripter.Script($srv.databases["$Databasename"])

$date=Get-Date
$suffix="_"+$date.year.tostring()+"_"+$date.month.tostring()+"_"
+$date.day.tostring()
$filepath=$filepath+$databasename+"_db_"+$suffix+".sql"
$scrcontent2="use [master]"+"`r`n"+"Go"+"`r`n"

foreach ($str in $scrcontent)

488

Chapter 21: Generating Database Scripts

{
$scrcontent2=$scrcontent2+ $str+"`r`n"+"Go"+"`r`n"

}
Out-File -inputobject $scrcontent2 -filepath $filepath -encoding "Default"

Before executing the script, use the Set-Location cmdlet to change the location of the script folder to
C:\DBAScripts if you are not on that folder:

Set-Location C:\DBAScripts

Now execute C:\DBAScripts\Script-Db.ps1 as shown here:

.\Script-Db.ps1 PowerServer3 Adventureworks2008 C:\scdata\

When the preceding C:\DBAScripts\Script-DB.ps1 is executed, it generates the DDL com-
mands for creating the database Adventureworks2008 and stores the generated commands on to the file
C:\scdata\Adventureworks2008_db_2009_2_15.sql.The file name is generated on the fly. The prefix of
the filename is generated based on the database name that is passed as the parameter plus the word
‘‘ db ’’. The suffix of the filename is generated based on the current timestamp when the script was
executed (see Figure 21-1).

Figure 21-1

Scripting Schemas
You know that the schema is separated from the database user beginning with SQL Server 2005; that
separation continues in SQL Server 2008. Generating DDL for a schema is just as important as generating
DDL for databases.

489

Chapter 21: Generating Database Scripts

Now create the following script, C:\DBAScripts\Script-Schema.ps1. This generates DDL statements for
all schemas in a database when executed. It is similar to Script-DB.ps1. This script uses the foreach loop
to iterate through all the schemas, and generates the scripts for each schema using the script method.

#===
#
NAME: Script-Schema.ps1
#
AUTHOR: Yan and MAK
DATE : 5/1/2008
#
COMMENT: This script generates DDL statement for all schemas from the given database
#===

param
(

[string] $ServerName,
[string] $DatabaseName,
[string] $filepath

)

[reflection.assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") | Out-Null

$MyScripter=New-Object("Microsoft.SqlServer.Management.Smo.Scripter")

$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" "$ServerName"

$db = $srv.Databases["$DatabaseName"]

$MyScripter.Server=$srv

$date=Get-Date

$suffix="_"+$date.year.tostring()+"_"+$date.month.tostring()+"_"
+$date.day.tostring()

$filepath=$filepath+$databasename+"_schema_"+$suffix+".sql"

$scrcontent="use [$databasename]"+"`r`n"+"Go"+"`r`n"

foreach ($sch in $db.Schemas)
{

$scrcontent=$scrcontent+ $sch.script()+"`r`n"+"Go"+"`r`n"
}

Out-File -inputobject $scrcontent -filepath $filepath -encoding "Default"

Now execute the script as shown here:

.\Script-Schema.ps1 PowerServer3 Adventureworks2008 C:\scdata\

When the preceding C:\DBAScripts\Script-Schema.ps1 is executed, it generates the DDL commands
for creating all the Schemas in the database Adventureworks2008 and stores the generated commands on

490

Chapter 21: Generating Database Scripts

to the file C:\scdata\Adventureworks2008_schema_2009_2_15.sql. The file name is generated on the
fly. The prefix of the filename is generated based on the database name that is passed as the parameter
plus the word ‘‘ schema ’’. The suffix of the filename is generated based on the current timestamp when
the script was executed (see Figure 21-2).

Figure 21-2

Scripting User-Defin d Data Types
This section illustrates the method to generate all the user-defined data types on a given database. The
script created in this section is also similar to Script-DB.ps1. It uses the foreach loop to iterate through
all the user-defined data types available on the database and generates the scripts for each one using the
script method. Create the following script, named C:\DBAScripts\Script-UDDtype.ps1:

===
#
NAME: Script-UDDtype.ps1
#
AUTHOR: Yan and MAK
DATE : 5/1/2008
#
COMMENT: This script generates DDL statement for User Defined Data Type
===

param
(

[string] $ServerName,
[string] $DatabaseName,
[string] $filepath

)

491

Chapter 21: Generating Database Scripts

[reflection.assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") | Out-Null
$MyScripter=New-Object("Microsoft.SqlServer.Management.Smo.Scripter")
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" "$ServerName"
$db=$srv.Databases["$DatabaseName"]

$MyScripter.Server=$srv
$date=Get-Date
$suffix="_"+$date.year.tostring()+"_"+$date.month.tostring()+"_"+
$date.day.tostring()
$filepath=$filepath+$databasename+"_uddtype_"+$suffix+".sql"

$scrcontent="use [$databasename]"+"`r`n"+"Go"+"`r`n"
Out-File -inputobject $scrcontent -filepath $filepath -encoding "Default"

foreach ($type in $db.UserDefineddataTypes)
{

$spcontent=$type.script()

Out-File -inputobject $spcontent -filepath $filepath -encoding "Default"
-append

$suffix2="`r`n"+"Go"+"`r`n"
Out-File -inputobject $suffix2 -filepath $filepath -encoding "Default"

-append
}

Now execute the script as shown here:

.\Script-UDDtype.ps1 PowerServer3 Adventureworks2008 C:\scdata\

When the preceding C:\DBAScripts\Script-UDDtype.ps1 is executed, it generates the DDL commands
for creating all the User Defined Data Types in the database Adventureworks2008 and stores the gener-
ated commands on to the file C:\scdata\Adventureworks2008_uddtype_2009_2_15.sql. The file name
is generated on the fly. The prefix of the filename is generated based on the database name that is passed
as the parameter plus the word ‘‘ uddtype ’’. The suffix of the filename is generated based on the current
timestamp when the script was executed (see Figure 21-3).

The following script, C:\DBAScripts\Script-UDtype.ps1, generates all user-defined types that are based
on .NET data types in the database. This script is also similar to Script-DB.ps1. It uses the foreach loop
to iterate through all the user-defined data types available on the database and generates the scripts for
each one using the script method:

===
#
NAME: Script-UDtype.ps1
#
AUTHOR: Yan and MAK
DATE : 5/1/2008
#
COMMENT: This script generates DDL statement User Defined Type.
===

param
(

492

Chapter 21: Generating Database Scripts

[string] $ServerName,
[string] $DatabaseName,
[string] $filepath

)

[reflection.assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") | Out-Null
$MyScripter=New-Object("Microsoft.SqlServer.Management.Smo.Scripter")
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" "$ServerName"
$db = $srv.Databases["$DatabaseName"]

$MyScripter.Server=$srv
$date=Get-Date
$suffix="_"+$date.year.tostring()+"_"+$date.month.tostring()+"_"
+$date.day.tostring()
$filepath=$filepath+$databasename+"_udtype_"+$suffix+".sql"

$scrcontent="use [$databasename]"+"`r`n"+"Go"+"`r`n"
Out-File -inputobject $scrcontent -filepath $filepath -encoding "Default"

$spcontent =""
foreach ($udtype in $db.UserDefinedTypes)
{
$udtype.script()
$spcontent=$udtype.script()
$spcontent

Out-File -inputobject $spcontent -filepath $filepath -encoding "Default" -append
$suffix2="`r`n"+"Go"+"`r`n"
Out-File -inputobject $suffix2 -filepath $filepath -encoding "Default" -append
}

Figure 21-3

493

Chapter 21: Generating Database Scripts

Execute the script as shown here:

.\Script-UDtype.ps1 PowerServer3 Adventureworks2008 C:\scdata\

If you do not have user-defined types, then the generated file, such as Adventureworks2008_udtype
_2009_2_15.sql, will be empty.

The prefix of the filename is generated based on the database name that is passed as the parameter plus
the word ‘‘ udtype ’’. The suffix of the filename is generated based on the current timestamp when the
script was executed.

Scripting Tables
Tables are the most important objects in the database because that is where most of the data is stored.
However, tables have other dependent objects such as indexes, constraints, keys, and so on. When you
are trying to generate a DDL script for a table, it is important to generate DDL statements for all the
related dependent objects as well.

The following script, C:\DBAScripts\Script-Table.ps1, generates all the tables, constraints, indexes,
and keys in the database. This script is similar to Script-DB.ps1. It uses the foreach loop to iterate
through all the tables, indexes, default constraints, check constraints, primary key constraints, foreign
key constraints, and triggers available on the database, and generates the scripts for each of them using
the script method.

===
#
NAME: Script-Table.ps1
#
AUTHOR: Yan and MAK
DATE : 5/1/2008
#
COMMENT: This script generates DDL statement for all tables
#
===

param
(

[string] $ServerName,
[string] $DatabaseName,
[string] $filepath

)

[reflection.assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") | Out-Null
$Scripter=New-Object("Microsoft.SqlServer.Management.Smo.Scripter")
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" "$ServerName"
$db = $srv.Databases["$DatabaseName"]
$Scripter.Server=$srv
$date=get-date
$suffix="_"+$date.year.tostring()+"_"+$date.month.tostring()+"_"
+$date.day.tostring()

494

Chapter 21: Generating Database Scripts

$filepath=$filepath+$databasename+"_table_"+$suffix+".sql"

$scrcontent="use [$databasename]"+"`r`n"+"Go"+"`r`n"

foreach ($Table in $db.Tables)
{

$scrcontent =$scrcontent +$table.script()

$Scripter.Options.DriPrimaryKey = $true

foreach ($Index in $Table.Indexes)
{

if($Index.IndexKeyType -eq [Microsoft.SqlServer.Management.Smo
.IndexKeyType]::DriPrimaryKey)

{
$scrcontent =$scrcontent +$Index.script()+"`r`n"+"Go"+"`r`n"

}
else
{

$scrcontent =$scrcontent +$Index.script()+"`r`n"+"Go"+"`r`n"
}

}

$Scripter.Options.DriPrimaryKey = $false

foreach ($Check in $Table.Checks)
{

$Scripter.Options.DriChecks = $true
$scrcontent =$scrcontent +$check.script()+"`r`n"+"Go"+"`r`n"
$Scripter.Options.DriChecks = $false

}

foreach ($DmlTrigger in $Table.Triggers)
{

$scrcontent =$scrcontent +$dmltrigger.script()+"`r`n"+"Go"+"`r`n"
}

foreach ($Column in $Table.Columns)
{

if ($Column.DefaultConstraint -ne $null)
{

$scrcontent =$scrcontent+$Column.DefaultConstraint.script()
+"`r`n"+"Go"+"`r`n"

}
}

}

foreach ($Table in $db.Tables)
{

$Scripter.Options.DriForeignKeys = $true

foreach ($ForeignKey in $Table.ForeignKeys)

495

Chapter 21: Generating Database Scripts

{
$scrcontent =$scrcontent +$ForeignKey.script()+"`r`n"+"Go"+"`r`n"

}

$Scripter.Options.DriForeignKeys = $false
}

Out-File -inputobject $scrcontent -filepath $filepath -encoding "Default"

Now execute the script as shown here:

.\Script-Table.ps1 PowerServer3 Adventureworks2008 C:\scdata\

When the preceding C:\DBAScripts\Script-Table.ps1 is executed, it generates the DDL commands for
creating all the tables in the database Adventureworks2008 and stores the generated commands on to the
file C:\scdata\Adventureworks2008_table_2009_2_15.sql. The file name is generated on the fly. The
prefix of the filename is generated based on the database name that is passed as the parameter plus the
word ‘‘ table ’’. The suffix of the filename is generated based on the current timestamp when the script
was executed (see Figure 21-4).

Figure 21-4

Scripting User V iews
Next, create the following script, C:\DBAScripts\Script-View.ps1, that generates all the user views in
the database. This script is similar to the Script-DB.ps1 script. It uses the foreach loop to iterate through
all the views available on the database and generates the scripts for each view using the script method.

496

Chapter 21: Generating Database Scripts

===
#
NAME: Script-View.ps1
#
AUTHOR: Yan and MAK
DATE : 5/1/2008
#
COMMENT: This script generates DDL statement for views
#
===

param
(

[string] $ServerName,
[string] $DatabaseName,
[string] $filepath

)

[reflection.assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") | Out-Null
$MyScripter=New-Object("Microsoft.SqlServer.Management.Smo.Scripter")
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" "$ServerName"
$db = $srv.Databases["$DatabaseName"]

$MyScripter.Server=$srv
$date=Get-Date
$suffix="_"+$date.year.tostring()+"_"+$date.month.tostring()+"_"
+$date.day.tostring()
$filepath=$filepath+$databasename+"_view_"+$suffix+".sql"

$scrcontent="use [$databasename]"+"`r`n"+"Go"+"`r`n"
Out-File -inputobject $scrcontent -filepath $filepath -encoding "Default"

foreach ($view in $db.views)
{

if ($view.IsSystemObject -eq $false)
{

$spcontent=$view.script()

Out-File -inputobject $spcontent -filepath $filepath -encoding "
Default" -append

$suffix2="`r`n"+"Go"+"`r`n"
Out-File -inputobject $suffix2 -filepath $filepath -encoding "

Default" -append
}

}

Execute the script as shown here:

.\Script-View.ps1 PowerServer3 Adventureworks2008 C:\scdata\

When the preceding C:\DBAScripts\Script-View.ps1 is executed, it generates the DDL commands for
creating all the views in the database Adventureworks2008 and stores the generated commands on to the
file C:\scdata\Adventureworks2008_view_2009_2_15.sql. The file name is generated on the fly. The

497

Chapter 21: Generating Database Scripts

prefix of the filename is generated based on the database name that is passed as the parameter plus the
word ‘‘ view ’’. The suffix of the filename is generated based on the current timestamp when the script
was executed (see Figure 21-5).

Figure 21-5

Scripting Stored Procedures
The next script, C:\DBAScripts\Script-SP.ps1, generates all the stored procedures in the database. This
script is similar to the Script-DB.ps1 script. It uses the foreach loop to iterate through all the stored
procedures available on the database and generates the scripts for each one using the script method.
Here, we also use the PreFetchObject method. The PreFetchObject method enables collections to be
fully populated with objects with one network trip to the instance of Microsoft SQL Server. Prefetching
is an optimization used when the whole collection of objects is required.

===
#
NAME: Script-SP.ps1
#
AUTHOR: Yan and MAK
DATE : 5/1/2008
#
COMMENT: This script generates DDL statement for all stored procedures
#
===

498

Chapter 21: Generating Database Scripts

param
(

[string] $ServerName,
[string] $DatabaseName,
[string] $filepath

)

[reflection.assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") | Out-Null
$MyScripter=New-Object("Microsoft.SqlServer.Management.Smo.Scripter")
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" "$ServerName"
$db = $srv.Databases["$DatabaseName"]

$db.PrefetchObjects([Microsoft.SqlServer.Management.Smo.StoredProcedure])

$MyScripter.Server=$srv
$date=Get-Date
$suffix="_"+$date.year.tostring()+"_"+$date.month.tostring()+"_"
+$date.day.tostring()
$filepath=$filepath+$databasename+"_storedprocedure_"+$suffix+".sql"

$scrcontent="use [$databasename]"+"`r`n"+"Go"+"`r`n"
Out-File -inputobject $scrcontent -filepath $filepath -encoding "Default"

foreach ($sp in $db.StoredProcedures)
{

if ($sp.IsSystemObject -eq $false)
{

$spcontent=$sp.script()

Out-File -inputobject $spcontent -filepath $filepath -encoding "Default"
-append

$suffix2="`r`n"+"Go"+"`r`n"
Out-File -inputobject $suffix2 -filepath $filepath -encoding "Default"

-append
}

}

Now execute the script as shown here:

.\Script-SP.ps1 PowerServer3 Adventureworks2008 C:\scdata\

When the preceding C:\DBAScripts\Script-SP.ps1 is executed, it generates the DDL commands for
creating all the Stored Procedures in the database Adventureworks2008 and stores the generated com-
mands on to the file C:\scdata\Adventureworks2008_storedprocedure_2009_2_15.sql. The file name
is generated on the fly. The prefix of the filename is generated based on the database name that is passed
as the parameter plus the word ‘‘ storedprocedure ’’. The suffix of the filename is generated based on
the current timestamp when the script was executed (see Figure 21-6).

499

Chapter 21: Generating Database Scripts

Figure 21-6

Scripting Functions
The next script shows all the functions in the database. This script, named Script-Function.psi, is
similar to Script-DB.ps1. It uses the foreach loop to iterate through all the functions available on the
database and generates the scripts for each function using the script method.

===
#
NAME: Script-Function.ps1
#
AUTHOR: Yan and MAK
DATE : 5/1/2008
#
COMMENT: This script generates DDL statement for all functions
#
===
param
(

[string] $ServerName,
[string] $DatabaseName,
[string] $filepath

)

[reflection.assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") | Out-Null
$MyScripter=New-Object("Microsoft.SqlServer.Management.Smo.Scripter")
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" "$ServerName"
$db = $srv.Databases["$DatabaseName"]

$MyScripter.Server=$srv
$date=Get-Date

500

Chapter 21: Generating Database Scripts

$suffix="_"+$date.year.tostring()+"_"+$date.month.tostring()+"_"
+$date.day.tostring()
$filepath=$filepath+$databasename+"_function_"+$suffix+".sql"

$scrcontent="use [$databasename]"+"`r`n"+"Go"+"`r`n"
Out-File -inputobject $scrcontent -filepath $filepath -encoding "Default"

foreach ($function in $db.UserDefinedFunctions)
{

if ($function.IsSystemObject -eq $false)
{

$spcontent=$function.script()

Out-File -inputobject $spcontent -filepath $filepath -encoding "
Default" -append

$suffix2="`r`n"+"Go"+"`r`n"
Out-File -inputobject $suffix2 -filepath $filepath -encoding "

Default" -append
}

}

Execute the script as shown here:

.\Script-Function.ps1 PowerServer3 Adventureworks2008 C:\scdata\

When the preceding C:\DBAScripts\Script-Function.ps1 is executed, it generates the DDL commands
for creating all the user defined functions in the database Adventureworks2008 and stores the generated
commands on to the file C:\scdata\Adventureworks2008_function_2009_2_15.sql. The file name is
generated on the fly. The prefix of the filename is generated based on the database name that is passed as
the parameter plus the word ‘‘ function ’’. The suffix of the filename is generated based on the current
timestamp when the script was executed (see Figure 21-7).

Figure 21-7

501

Chapter 21: Generating Database Scripts

Scripting XML Schemas
Now create the following script, C:\DBAScripts\Script-XMLSchema.ps1, that generates all the XML
schemas in the database. This script is similar to the Script-DB.ps1 script. It uses the foreach loop to
iterate through all the XML schemas available on the database and generates the scripts for each one
using the script method.

===
#
NAME: Script-XMLSchema.ps1
#
AUTHOR: Yan and MAK
DATE : 5/1/2008
#
COMMENT: This script generates DDL statement for all XML Schema
#
===
param
(

[string] $ServerName,
[string] $DatabaseName,
[string] $filepath

)

[reflection.assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") | Out-Null
$MyScripter=New-Object("Microsoft.SqlServer.Management.Smo.Scripter")
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" "$ServerName"
$db = $srv.Databases["$DatabaseName"]

$MyScripter.Server=$srv
$date=Get-Date
$suffix="_"+$date.year.tostring()+"_"+$date.month.tostring()+"_"
+$date.day.tostring()
$filepath=$filepath+$databasename+"_xml_"+$suffix+".sql"

$scrcontent="use [$databasename]"+"`r`n"+"Go"+"`r`n"
Out-File -inputobject $scrcontent -filepath $filepath -encoding "Default"

foreach ($xml in $db.XmlSchemaCollections)
{

$spcontent=$xml.script()

Out-File -inputobject $spcontent -filepath $filepath -encoding "Default"
-append

$suffix2="`r`n"+"Go"+"`r`n"
Out-File -inputobject $suffix2 -filepath $filepath -encoding "Default"

-append
}

Execute the script as shown here:

.\Script-XMLSchema.ps1 PowerServer3 Adventureworks2008 C:\scdata\

502

Chapter 21: Generating Database Scripts

When the preceding C:\DBAScripts\Script-XMLSchema.ps1 is executed, it generates the DDL com-
mands for creating all the XML Schema in the database Adventureworks2008 and stores the generated
commands on to the file C:\scdata\Adventureworks2008_xml_2009_2_15.sql. The file name is gener-
ated on the fly. The prefix of the filename is generated based on the database name that is passed as the
parameter plus the word ‘‘ xml ’’. The suffix of the filename is generated based on the current timestamp
when the script was executed (see Figure 21-8).

Figure 21-8

Scripting Users
You may want to create the following script, C:\DBAScripts\Script-User.ps1, which will generate all
the users in the database. This script is similar to the Script-DB.ps1 script. It uses the foreach loop to
iterate through all the users available on the database and generates the scripts for each user using the
script method.

===
#
NAME: Script-User.ps1
#
AUTHOR: Yan and MAK
DATE : 5/1/2008
#
COMMENT: This script generates DDL statement for all users
#
===

503

Chapter 21: Generating Database Scripts

param
(

[string] $ServerName,
[string] $DatabaseName,
[string] $filepath

)

[reflection.assembly]::LoadWithPartialName("Microsoft.SqlServer.Smo") | Out-Null
$MyScripter=New-Object("Microsoft.SqlServer.Management.Smo.Scripter")
$srv=New-Object "Microsoft.SqlServer.Management.Smo.Server" "$ServerName"
$db = $srv.Databases["$DatabaseName"]

$MyScripter.Server=$srv
$date=Get-Date
$suffix="_"+$date.year.tostring()+"_"+$date.month.tostring()+"_"
+$date.day.tostring()
$filepath=$filepath+$databasename+"_user_"+$suffix+".sql"

$scrcontent="use [$databasename]"+"`r`n"+"Go"+"`r`n"
Out-File -inputobject $scrcontent -filepath $filepath -encoding "Default"

foreach ($user in $db.Users)
{

if ($user.IsSystemObject -eq $false)
{

$spcontent=$user.script()

Out-File -inputobject $spcontent -filepath $filepath -encoding "Default"
-append

$suffix2="`r`n"+"Go"+"`r`n"
Out-File -inputobject $suffix2 -filepath $filepath -encoding "Default"

-append
}

}

Now execute the script as shown here:

.\Script-User.ps1 PowerServer3 Adventureworks2008 C:\scdata\

When the preceding C:\DBAScripts\Script-User.ps1 is executed, it generates the DDL commands for
creating all the users in the database Adventureworks2008 and stores the generated commands on to the
file C:\scdata\Adventureworks2008_user_2009_2_15.sql. The file name is generated on the fly. The
prefix of the filename is generated based on the database name that is passed as the parameter plus the
word ‘‘ user ’’. The suffix of the filename is generated based on the current timestamp when the script
was executed (see Figure 21-9).

From all the Windows PowerShell scripts related to database object scripting (see Figure 21-10), you can
see that each one generated corresponding SQL files accordingly (see Figure 21-11).

If you want to generate all the objects, constraints, stored procedures, functions, users, data types,
and views from one single script, you could either merge all the preceding scripts into one or use the

504

Chapter 21: Generating Database Scripts

SMO.Transfer method. The Transfer object is a tool object that provides programmatic control over
copying schemas and data to other instances of SQL Server. We do not illustrate that method here, but
we encourage you to explore that option yourself.

Figure 21-9

Figure 21-10

Figure 21-11

505

Chapter 21: Generating Database Scripts

You could schedule all the preceding Windows PowerShell scripts to run on a nightly basis. You could
then compare the generated file from one script on a particular day with the generated file from the same
script from another day and see if anything changed.

Summary
This chapter illustrated various ways to create DDL scripts for databases, schemas, tables, functions,
stored procedures, users, user-defined data types, and so on. Windows PowerShell enables you to use
.NET-based object library SQL Server Management Objects (SMO) to script the database objects.

This book has provided all the necessary information you need about Windows PowerShell with respect
to SQL Server database administration. You have seen plenty of examples demonstrating how valuable
Windows PowerShell scripts can be for improving the manageability of a SQL Server plant. We hope you
enjoyed reading this book and that you learned both sides of system and database administration with
Windows PowerShell. We also hope that the solutions presented in this book help you manage your own
environment and make your life easier.

506

cmdlets

If you need detailed information on any of the cmdlets listed in this Appendix, please execute the
cmdlet Get-Help with the name of the cmdlet you are interested in as a parameter, as shown below:

Get-Help Get-WMIObject -Full

For more information about Get-Help, refer to Chapter 2.

If you need detailed information on some of the cmdlets’ related programming, snapins, please
execute cmdlet Get-Help as shown below:

Get-Help About_PSSnapins

To get the list of available help related to About*, execute the cmdlet Get-Help as shown below:

Get-Help About*

cmdlets Related to Core Snap-ins
Add-History cmdlet: Adds entries to the end of the session history — that is, the list of commands
entered during the current session. You can use the Get-History cmdlet to get the commands
and pass them to Add-History, or export the commands to a CSV or XML file and then import
the commands, and pass the imported file to Add-History. You can use this cmdlet to add specific
commands to the history or to create a single history file that includes commands from more than
one session.

Add-PSSnapIn cmdlet: Adds one or more registered Windows PowerShell snap-ins to the current
session. After the snap-ins are added, you can use the cmdlets and providers that the snap-in sup-
ports in the current session. To add the snap-in to all future Windows PowerShell sessions, add an
Add-PSSnapin command to your Windows PowerShell profile. For more information about profiles,
refer to Chapter 4.

Appendix A: cmdlets

Clear-History cmdlet: Deletes commands from the command history — that is, the list of commands
entered during the current session. Without parameters, Clear-History deletes all commands from the
session history, but you can use the parameters of Clear-History to delete selected commands.

Enter-PSSession cmdlet: Starts an interactive session with a single remote computer. During the
session, the commands that you type run on the remote computer, just as though you were typing
directly on the remote computer. You can have only one interactive session at a time. Typically,
you use the ComputerName parameter to specify the name of the remote computer, but you can
also use a session that you create by using New-PSSession for the interactive session. To end the
interactive session and disconnect from the remote computer, use the Exit-PSSession cmdlet or
type Exit.

Exit-PSSession cmdlet: Ends interactive sessions that you started by using Enter-PSSession. You
can also use the EXIT keyword to end an interactive session. The effect is the same as using Exit-
PSSession.

Export-Console cmdlet: Exports the names of the Windows PowerShell snap-ins (PSSnapins) in the
current session to a Windows PowerShell console file (.psc1). You can use this cmdlet to save the snap-
ins for use in future sessions. To add the snap-ins in the .psc1 console file to a session, start Windows
PowerShell (powershell.exe) at the command line, such as by using Cmd.exe or another Windows
PowerShell session, and use the PSConsoleFile parameter of PowerShell.exe to specify the console file.

ForEach-Object cmdlet: Performs an operation on each of a set of input objects. The input objects
can be piped to the cmdlet or specified by using the InputObject parameter. The operation to per-
form is described within a script block, which is provided to the cmdlet as the value of the Process
parameter. The script block can contain any Windows PowerShell script. Within the script block, the
current input object is represented by the $_ variable. In addition to the script block that describes the
operations to be carried out on each input object, you can provide two additional script blocks: one is
specified as the value of the Begin parameter, and runs before the first input object is processed; the
other is specified as the value of the End parameter, and runs after the last input object is processed. The
evaluation results of all the script blocks, including the ones specified with Begin and End, are passed
down the pipeline.

Get-Command cmdlet: Gets basic information about cmdlets and other elements of Windows PowerShell
commands in the session, such as aliases, functions, filters, scripts, and applications. Get-Command gets
its data directly from the code of a cmdlet, function, script, or alias, unlike Get-Help, which gets its infor-
mation from help topic files. Without parameters, Get-Command gets all of the cmdlets and functions in
the current session. Get-Command * gets all Windows PowerShell elements and all of the non–Windows-
PowerShell files in the Path environment variable ($env:path). It groups the files in the Application
command type. You can use the Module parameter of Get-Command to find commands that were added
to the session by adding a Windows PowerShell snap-in or importing a module.

Get-Help cmdlet: Displays information about Windows PowerShell cmdlets and concepts. To get a list
of all cmdlet help topic titles, type get-help *. If you type get-help followed by the exact name of a help
topic or a word unique to a help topic, Get-Help displays the topic contents. If you enter a word or word
pattern that appears in several help topic titles, Get-Help displays a list of the matching titles. If you enter

508

Appendix A: cmdlets

a word that does not appear in any help topic titles, then Get-Help displays a list of topics that include
that word in their contents. In addition to get-help, you can also type help or man, which displays one
screen of text at a time, or <cmdlet-name> -?, which is identical to Get-Help, but works only for cmdlets.
You can display the entire cmdlet help file or selected parts of the file, such as the syntax, parameters,
or examples. You can also use the Online parameter to display an online version of a cmdlet help file
in your Internet browser. Conceptual help topics in Windows PowerShell begin with ‘‘about_,’’ such as
‘‘about_comparison_operators.’’ To see all ‘‘about_’’ topics, type get-help about *. To see a particular
topic, type get-help about <topic-name>, such as get-help about comparison operators.

Get-History cmdlet: Gets the session history, or the list of commands entered during the current session.
Windows PowerShell automatically maintains a history of each session. You can save the session history
in XML or CSV format. By default, history files are saved in the home directory, but you can save the file
in any location.

Get-Job cmdlet: Gets objects that represent the background jobs that were started in the current session.
You can use Get-Job to get jobs that were started by using Start-Job, or by using the AsJob parameter
of any cmdlet. Without parameters, a Get-Job command gets all jobs in the current session. You can
use the parameters of Get-Job to get particular jobs. The job object that Get-Job returns contains useful
information about the job, but it does not contain the job results. To get the results, use the Receive-Job
cmdlet. A Windows PowerShell background job is a command that runs ‘‘in the background’’ without
interacting with the current session. Typically, you use a background job to run a complex command that
takes a long time to complete. For more information about background jobs in Windows PowerShell,
type get-help about jobs.

Get-PSSession cmdlet: Gets the Windows PowerShell sessions (PSSessions) that were created in the
current session. Without parameters, Get-PSSession gets all of the PSSessions created in the current
session. You can use the parameters of Get-PSSession to get the sessions that are connected to particular
computers or to identify sessions by their name, ID, or instance ID. For more information about Windows
PowerShell sessions, type get-help about PSSessions.

Get-PSSnapIn cmdlet: Gets objects representing each Windows PowerShell snap-in added to the cur-
rent session or registered on the system. The snap-ins are listed in the order in which they are detected.
Get-PSSnapin gets only registered snap-ins. To register a Windows PowerShell snap-in, use the Instal-
lUtil tool included the Microsoft .NET Framework 2.0. For instructions, see ‘‘How to Register Cmdlets,
Providers, and Host Applications’’ in the Windows PowerShell Programmer’s Guide on MSDN.

Invoke-Command cmdlet: Runs commands on a local or remote computer and returns all output from
the commands, including errors. With a single Invoke-Command command, you can run commands on
multiple computers. To run a single command on a remote computer, use the ComputerName parameter.
To run a series of related commands that share data, create a PSSession (a persistent connection) on
the remote computer, and then use the Session parameter of Invoke-Command to run the command in
the PSSession. You can also use Invoke-Command on a local computer to evaluate or run a string in a
script block as a command. Windows PowerShell converts the script block to a command and runs the
command immediately in the current scope, instead of just echoing the string at the command line. Before
using Invoke-Command to run commands on a remote computer, read about_remote. To see important
notes about the use of this cmdlet, type get-help invoke-command -full.

509

Appendix A: cmdlets

Invoke-History cmdlet: Runs commands from the session history. You can pass objects representing the
commands from Get-History to Invoke-History, or identify commands in the current history by using
their ID number. To find the identification number of a command, use Get-History.

New-PSSession cmdlet: Creates a Windows PowerShell session (PSSession) on a local or remote
computer. When you create a PSSession, Windows PowerShell establishes a persistent connection to
the remote computer. Use a PSSession to run multiple commands that share data, such as a function
or the value of a variable. To run commands in a PSSession, use the Invoke-Command cmdlet. To use
the PSSession to interact directly with a remote computer, use the Enter-PSSession cmdlet. For more
information, see about_PSSessions. You can run commands on a remote computer without creating a
PSSession by using the ComputerName parameter of Enter-PSSession or Invoke-Command. When you
use the ComputerName parameter, Windows PowerShell creates a temporary connection that is used for
the interactive session or for a single command and is then closed.

Receive-Job cmdlet: Gets the results (output and/or errors) of Windows PowerShell background
jobs. Use Receive-Job to get the results of jobs started by using Start-Job or the AsJob parameter
of any cmdlet. You can get the results of all jobs or identify jobs by name, ID, instance ID, computer
name, location, or session, or by submitting a job object. When you start a Windows PowerShell
background job, the job starts, but the results do not appear immediately. Instead, the command
returns an object that represents the background job. The job object contains useful information
about the job, but it does not contain the results. This method enables you to continue working in
the session while the job runs. For more information about background jobs in Windows Power-
Shell, type get-help about jobs. To get the results of the command, use the Receive-Job cmdlet.
Receive-Job gets the results (output and errors) that have been generated by the time that
the Receive-Job command is submitted. If the results are not yet complete, you can run additional
Receive-Job commands to get the remaining results. By default, job results are deleted from the system
when you receive them, but you can use the Keep parameter to save the results so that you can receive
them again. To delete the job results, receive them again (without the Keep parameter), close the session,
or use the Remove-Job cmdlet to delete the job from the session.

Remove-Job cmdlet: Deletes Windows PowerShell background jobs that were started by using Start-Job
or the AsJob parameter of any cmdlet. You can use this cmdlet to delete all jobs or delete selected jobs
based on name, ID, instance ID, command, or state, or by passing a job object to Remove-Job. With-
out parameters or parameter values, Remove-Job has no effect. Before deleting a running job, use the
Stop-Job cmdlet to stop the job. If you try to delete a running job, the command fails. You can use the
Force parameter of Remove-Job to delete a running job. If you do not delete a background job, the job
remains in the global job cache until you close the session in which the job was created.

Remove-PSSession cmdlet: Closes the Windows PowerShell sessions (PSSessions) in the current session.
It stops any commands that are running in the PSSessions, ends the PSSession, and releases the resources
that the PSSession was using. If the PSSession is connected to a remote computer, Remove-PSSession
also closes the connection between the local and remote computers. If you have saved the PSSession in a
variable, the session object remains in the variable, but the state of the PSSession is Closed.

Remove-PSSnapIn cmdlet: Removes a Windows PowerShell snap-in from the current session. You
can use it to remove snap-ins that you have added to Windows PowerShell, but you cannot use it to
remove the snap-ins that are installed with Windows PowerShell. After a snap-in is removed from the

510

Appendix A: cmdlets

current session, it is still loaded, but the cmdlets and providers in the snap-in are no longer available in
the session.

Set-PsDebug cmdlet: Turns script debugging features on and off, sets the trace level, and toggles strict
mode. When the Trace parameter is set to 1, each line of the script is traced as it is executed. When
the parameter is set to 2, variable assignments, functions, and script calls are also traced. If the Step
parameter is specified, you are prompted before each line of the script is executed.

Set-StrictMode cmdlet: Configures strict mode for the current scope (and all child scopes) and turns it
on and off. When strictmode is on, Windows PowerShell generates a terminating error when the content
of an expression, script, or script block violates basic best-practice coding rules. Use the Version parameter
to determine which coding rules are enforced. Unlike the Set-PSDebug cmdlet, Set-StrictMode affects
only the current scope and its child scopes, so you can use it in a script or function without affecting
the global scope. When Set-StrictMode is off, uninitialized variables (Version 1) are assumed to have
a value of 0 or $null, depending on type. References to non-existent properties return $null. and the
results of invalid function syntax vary with the error. Unnamed variables are not permitted.

Start-Job cmdlet: Starts a Windows PowerShell background job on the local computer. A Windows
PowerShell background job runs a command ‘‘in the background’’ without interacting with the current
session. When you start a background job, a job object is returned immediately, even if the job takes an
extended time to complete. You can continue to work in the session without interruption while the job
runs. The job object contains useful information about the job, but it does not contain the job results.
When the job completes, use the Receive-Job cmdlet to get the results of the job. For more information
about background jobs, type get-help about jobs. To run a background job on a remote computer, use
the AsJob parameter, which is available on many cmdlets, or use the Invoke-Command cmdlet to run a
Start-Job command on the remote computer. For more information, see about_remote_jobs.

Stop-Job cmdlet: Stops Windows PowerShell background jobs that are in progress. You can use this
cmdlet to stop all jobs or stop selected jobs based on their name, ID, instance ID, or state, or by passing
a job object to Stop-Job. You can use Stop-Job to stop jobs that were started by using Start-Job or
the AsJob parameter of Invoke-Command. When you stop a background job, Windows PowerShell com-
pletes all tasks that are pending in that job queue and then ends the job. No new tasks are added to the
queue after this command is submitted. This cmdlet does not delete background jobs. To delete a job, use
Remove-Job.

Wait-Job cmdlet: Waits for Windows PowerShell background jobs to complete before it displays the
command prompt. You can wait until any background job is complete or until all background jobs are
complete, and set a maximum wait time for the job. You can use Wait-Job to get background jobs that
were started by using Start-Job or the AsJob parameter of Invoke-Command. When the commands in the
job are complete, Wait-Job displays the command prompt and returns a job object so you can pipe it to
another command.

Where-Object cmdlet: Creates a filter that controls which objects will be passed along a command
pipeline. It filters objects passed to it as pipelined input or objects provided as the value of the
InputObject parameter. It determines which objects to pass along the pipeline by evaluating a script
block, which may include a reference to an object being filtered. If the result of the evaluation is True,
the object being processed is passed along the pipeline; otherwise, the object is discarded.

511

Appendix A: cmdlets

cmdlets Related to the PowerShell
Management Snap-in

Add-Computer cmdlet: Adds computers to a domain or workgroup. It also creates a domain account for
any computer added to the domain without an account. You can use the parameters of this cmdlet to
specify an OU and domain controller, to perform an unsecure join, and to restart the computer automat-
ically. To get the results of the command, use the Verbose and Passthru parameters.

Add-Content cmdlet: Appends content to a specified item or file. You can specify the content by typing
it in the command or by specifying an object that contains the content.

Checkpoint-Computer cmdlet: Creates a system restore point on the local computer. This cmdlet runs
only on Windows Vista and Windows XP.

Clear-Content cmdlet: Deletes the contents of an item, such as deleting the text from a file, but does not
delete the item. As a result, the item exists, but is empty. Clear-Content is similar to Clear-Item, but
works on files, rather than aliases and variables.

Clear-EventLog cmdlet: Deletes all of the entries from the specified Event logs on the local computer or
remote computers. To use Clear-EventLog, you must be a member of the Administrators group on the
affected computer. The EventLog cmdlet works only on classic Event logs. To get events from logs that
use the Windows Eventing technology in Windows Vista and later versions of Windows, use Get-Event.

Clear-Item cmdlet: Deletes the value of an item but does not delete the item. For example, Clear-Item
can delete the value of a variable, but it does not delete the variable. Each Windows PowerShell provider
defines the value that is used to represent a cleared item. Clear-Item is similar to Clear-Content, but
works on aliases and variables, rather than files.

Clear-ItemProperty cmdlet: Deletes the value of a property but does not delete the property. You can
use this cmdlet to delete the data from a registry value.

Complete-Transaction cmdlet: Commits an active transaction. When you commit a transaction,
the commands in the transaction are finalized and the data affected by the commands is changed. If the
transaction includes multiple subscribers, then in order to commit the transaction, you must enter one
Complete-Transaction command for every Start-Transaction command. The Complete-Transaction
cmdlet is one of a set of cmdlets that support the transactions feature in Windows PowerShell. For more
information, see about_transactions.

Convert-Path cmdlet: Converts a path from a Windows PowerShell path to a Windows PowerShell
provider path.

Copy-Item cmdlet: Copies an item from one location to another in a namespace. Copy-Item does not
delete the items being copied. The particular items that the cmdlet can copy depend on the Windows
PowerShell providers available. For example, when used with the FileSystem provider, it can copy files
and directories; when used with the Registry provider, it can copy registry keys and entries.

Copy-ItemProperty cmdlet: Copies a property and value from a specified location to another location.
For example, you can use Copy-ItemProperty to copy one or more registry entries from one registry key
to another registry key.

512

Appendix A: cmdlets

Debug-Process cmdlet: Attaches a debugger to one or more running processes on a local computer. You
can specify the processes by their process name or process ID (PID), or you can pipe process objects to
Debug-Process. Debug-Process attaches the debugger currently registered for the process. Before using
this cmdlet, verify that a debugger is downloaded and correctly configured.

Disable-ComputerRestore cmdlet: Turns off the System Restore feature on one or more file system
drives. As a result, it attempts to restore the computer but does not affect the specified drive. To disable
System Restore on any drive, it must be disabled on the system drive, either first or concurrently. To
re-enable System Restore, use the Enable-ComputerRestore cmdlet. To find the state of System Restore
for each drive, use Rstrui.exe.

Enable-ComputerRestore cmdlet: Turns on the System Restore feature on one or more file system
drives. As a result, you can use tools, such as the Restore-Computer cmdlet, to restore the computer to a
previous state. By default, System Restore is enabled on all eligible drives, but you can disable it, such as
by using the Disable-ComputerRestore cmdlet. To enable (or re-enable) System Restore on any drive,
it must be enabled on the system drive, either first or concurrently. To find the state of System Restore
for each drive, use Rstrui.exe.

Get-ChildItem cmdlet: Gets the items in one or more specified locations. If the item is a container, it gets
the items inside the container, known as child items. You can use the Recurse parameter to get items in
all child containers. A location can be a file system location, such as a directory, or a location exposed by
another provider, such as a registry hive or a certificate store.

Get-ComputerRestorePoint cmdlet: Gets the restore points on the local computer. This cmdlet can
also display the status of the most recent attempt to restore the computer. You can use the information
returned by Get-ComputerRestorePoint to select a restore point, and you can use the sequence number
to identify a restore point for the Restore-Computer cmdlet.

Get-Content cmdlet: Gets the content of the item at the location specified by the path, such as the text in
a file. It reads the content one line at a time and returns an object for each line.

Get-EventLog cmdlet: Gets events and Event logs on the local and remote computers. Use the parameters
of Get-EventLog to search for events by using their property values. Get-EventLog gets only the events
that match all of the specified property values. The EventLog cmdlet works only on classic Event logs.
To get events from logs that use the Windows Eventing technology in Windows Vista and later versions
of Windows, use Get-Event.

Get-Hotfix cmdlet: Gets the quick-fix engineering (QFE) updates that have been applied to the local
computer or to remote computers by Component-Based Servicing.

Get-Item cmdlet: Gets the item at the specified location. It does not get contents of the item at the location
unless you use a wildcard character (*) to request all contents of the item. The Get-Item cmdlet is used
by Windows PowerShell providers to enable you to navigate through different types of data stores.

Get-ItemProperty cmdlet: Gets the properties of the specified items. For example, you can use Get-
ItemProperty to get the value of the LastAccessTime property of a file object. You can also use
Get-ItemProperty to view registry entries and their values.

Get-Location cmdlet: Gets an object that represents the current directory, much like the pwd (print work-
ing directory) command. When you move between Windows PowerShell drives (PsDrives), Windows

513

Appendix A: cmdlets

PowerShell retains your location in each drive. You can use Get-Location to find your location in each
drive. You can also use Get-Location to get the current directory at run time, and use it in functions and
scripts, such as in a function that displays the current directory in the Windows PowerShell prompt. If
you use the Push-Location cmdlet to add locations to a path stack, you can use the Stack parameter of
Get-Location to display the current stack.

Get-Process cmdlet: Gets the processes on a local or remote computer. Without parameters, Get-
Process gets all of the processes on the local computer. You can also specify a particular process by
process name or process ID (PID) or pass a process object through the pipeline to Get-Process. By
default, Get-Process returns a process object that has detailed information about the process and
supports methods that enable you to start and stop the process. You can also use the parameters of
Get-Process to get file version information for the program that runs in the process, and get the
modules that the process loaded.

Get-PSDrive cmdlet: Gets the Windows PowerShell drives in the current console. You can get a partic-
ular drive or all drives in the console. Get-PSDrive gets the following drives: Windows logical drives
on the computer, including drives mapped to network shares; drives exposed by Windows PowerShell
providers, such as the Certificate, Function, and Alias drives and the HKLM and HKCU drives exposed
by the Windows PowerShell Registry provider; and drives that you create by using New-PSDrive.

Get-PSProvider cmdlet: Gets the Windows PowerShell providers in the current session. You can get
a particular drive or all drives in the session. Windows PowerShell providers enable you to access a
variety of data stores as though they were file system drives. For information about Windows PowerShell
providers, type get-help about Providers.

Get-Service cmdlet: Gets objects representing the services on a local computer or a remote computer,
including running and stopped services. You can direct Get-Service to get only particular services by
specifying the service name or display name of the services, or you can pipe service objects to Get-Service.

Get-Transaction cmdlet: Gets an object that represents the current transaction in the session. This cmdlet
never returns more than one object because only one transaction is active at a time. If you start one or
more independent transactions (by using the Independent parameter of Start-Transaction), the most
recently started transaction is active, which is the transaction returned by Get-Transaction. When all
active transactions have either been rolled back or committed, Get-Transaction shows the transaction
that was most recently active in the session. The Get-Transaction cmdlet is one of a set of cmdlets that
support the transactions feature in Windows PowerShell. For more information, see about_transactions.

Get-WmiObject cmdlet: Gets instances of WMI classes or information about available classes. The
ComputerName parameter can always be used to target a remote computer. If the List parameter
is specified, the cmdlet gets information about the WMI classes available in a specified namespace.
If the Query parameter is specified, the cmdlet runs a WMI query language (WQL) statement. Note:
Get-WmiObject does not use the Windows PowerShell remoting infrastructure to perform remote
operations. You can use the ComputerName parameter of Get-WmiObject even if your computer does
not fulfill the requirements for Windows PowerShell remoting and is not configured for remoting in
Windows PowerShell.

Invoke-Item cmdlet: Performs the default action on the specified item. For example, it runs an executable
file or opens a document file in the application associated with the document file type. The default action
depends on the type of item and is determined by the Windows PowerShell provider that provides access
to the data.

514

Appendix A: cmdlets

Join-Path cmdlet: Combines a path and child-path into a single path. The provider supplies the path
delimiters.

Limit-EventLog cmdlet: Sets the maximum size of a classic Event log, how long each event must be
retained, and what happens when the log reaches its maximum size. You can use it to limit the Event
logs on local or remote computers. The EventLog cmdlets work only on classic Event logs. To get events
from logs that use the Windows Eventing technology in Windows Vista and later versions of Windows,
use Get-Event.

Move-Item cmdlet: Moves an item, including its properties, contents, and child items, from one location
to another. The same provider must support the locations. For example, it can move a file or subdirectory
from one directory to another or move a registry subkey from one key to another. When you move an
item, it is added to the new location and deleted from its original location.

Move-ItemProperty cmdlet: Moves a property of an item from one item to another. For example, it can
move a registry entry from one registry key to another registry key. When you move an item property, it
is added to the new location and deleted from its original location.

New-Item cmdlet: Creates a new item and sets its value. The type of items that can be created depends
upon the location of the item. For example, in the file system, New-Item is used to create files and folders.
In the registry, New-Item creates registry keys and entries. New-Item can also set the value of the items
that it creates. For example, when creating a new file, New-Item can add initial content to the file.

New-PSDrive cmdlet: Creates a Windows PowerShell drive (PsDrive) that is ‘‘mapped’’ to or associated
with a location in a data store, such as a network drive, a directory on the local computer, or a registry
key. You can use the PsDrives that you create to access data in the associated data store, just like you
would do with any mapped drive. You can change locations into the drive (set-location, cd, or chdir)
and access the contents of the drive (get-item, get-childitem, dir). However, the PsDrives are known
only to Windows PowerShell. You cannot access them by using Windows Explorer, WMI, COM, or .NET,
or by using tools such as Net Use. PsDrives exist only in the current Windows PowerShell console.
To make the drive persistent, you can export the console to which you have added the drive or save
a New-PSDrive command in your Windows PowerShell profile. To delete a drive that was created by
New-PSDrive, use Remove-PSDrive.

New-Service cmdlet: Creates a new entry for a Windows service in the registry and in the service
database. A new service requires an executable file that executes during the service. The parameters
of this cmdlet enable you to set the display name, description, startup type, and dependencies of the
service.

New-WebServiceProxy cmdlet: Enables you to use a Web service in Windows PowerShell. The cmdlet
connects to a Web service and creates a Web service proxy object in Windows PowerShell. You can use
the proxy object to manage the Web service. A Web service is an XML-based program that exchanges
data over a network, particularly over the Internet. The Microsoft .NET Framework provides Web service
proxy objects that represent the Web service as a .NET object.

Pop-Location cmdlet: Changes to the location most recently pushed onto the stack by using Push-
Location. You can pop a location from the default stack or from a stack that you create by using
Push-Location.

515

Appendix A: cmdlets

Push-Location cmdlet: Adds (‘‘pushes’’) the current location to the top of a list of locations, called a stack.
You can push the current location onto a default stack or onto a stack that you create. If you specify a path,
Push-Location pushes the current location onto the stack, and then changes to the location specified by
the path. You cannot push a location onto the stack unless it is the current location.

Remove-Computer cmdlet: Removes local and remote computers from their current workgroup
or domain. When you remove a computer from a domain, Remove-Computer also disables the computer’s
domain account. When the computer is in a domain, you must provide credentials, even when they are
the credentials of the current user, and you must restart the computer to make the change effective. To
get the results of the command, use the Verbose and PassThru parameters.

Remove-EventLog cmdlet: Deletes an Event log file from a local or remote computer and unregisters all
of its event sources for the log. You can also use this cmdlet to unregister event sources without deleting
any Event logs. The EventLog cmdlets work only on classic Event logs. To get events from logs that use
the Windows Eventing technology in Windows Vista and later versions of Windows, use Get-Event.

Remove-Item cmdlet: Deletes one or more items. Because it is supported by many providers, it can delete
many different types of items, including files, directories, registry keys, variables, aliases, and functions.

Remove-ItemProperty cmdlet: Deletes a property and its value from an item. You can use it to delete
registry values and the data that they store.

Remove-PSDrive cmdlet: Deletes Windows PowerShell drives that you created by using New-PSDrive.
Remove-PSDrive cannot delete Windows drives or mapped network drives created by using other meth-
ods. Also, you cannot delete the current working drive. Deletes WMI classes and instances.

Rename-Computer cmdlet: Renames computers in workgroups and domains. When you rename a com-
puter in a domain, Rename-Computer also changes the name in the computer’s domain account. You
cannot use Rename-Computer to rename domain controllers. When renaming a remote computer in a
domain, you must provide credentials, even when they are the current user’s credentials. When renaming
any computer in a domain, you must restart the computer to effect the name change.

Rename-Item cmdlet: Changes the name of a specified item. This cmdlet does not affect the contents of
the item being renamed. You cannot use Rename-Item to move an item, such as by specifying a path
along with the new name. To move and rename an item, use the Move-Item cmdlet.

Rename-ItemProperty cmdlet: Changes the name of a specified item property. The value of the property
is not changed. For example, you can use Rename-ItemProperty to change the name of a registry entry.

Reset-ComputerMachinePassword cmdlet: Changes the machine account password that the computers
use to authenticate to the domain controllers in the domain. You can use it to reset the passwords of local
and remote computers.

Resolve-Path cmdlet: Interprets the wildcard characters in a path and displays the items and containers
at the location specified by the path, such as the files and folders or registry keys and subkeys. The names
appear just as they are represented in the drive, including capitalization.

Restart-Computer cmdlet: Restarts the operating system on the local and remote computers. You can
use the parameters of Restart-Computer to run the restart operations as a background job, to specify the
authentication levels and alternate credentials, to limit the operations that run concurrently, and to force

516

Appendix A: cmdlets

an immediate restart. This cmdlet does not require Windows PowerShell remoting unless you use the
AsJob parameter.

Restart-Service cmdlet: Sends a stop message and then a start message to the Windows Service Con-
troller for a specified service. If a service was already stopped, then it is started without notifying you
of an error. You can specify the services by their service names or display names, or you can use the
InputObject parameter to pass an object that represents each service you want to restart.

Restore-Computer cmdlet: Restores the local computer to the specified system restore point. A
Restore-Computer command restarts the computer. The restore is completed during the restart operation.

Resume-Service cmdlet: Sends a resume message to the Windows Service Controller for each of the
specified services. If they have been suspended, then they resume service. If they are currently running,
then the message is ignored. You can specify the services by service name or display name, or you can
use the InputObject parameter to pass a service object that represents the services you want to resume.

Set-Content cmdlet: A string-processing cmdlet that writes or replaces the content in the specified
item, such as a file. Whereas the Add-Content cmdlet appends content to a file, Set-Content replaces
the existing content. You can type the content in the command or send content through the pipeline to
Set-Content.

Set-Item cmdlet: Changes the value of an item, such as a variable or registry key, to the value specified
in the command.

Set-ItemProperty cmdlet: Changes the value of the property of the specified item. You can use the
cmdlet to establish or change the properties of items. For example, you can use Set-ItemProperty to set
the value of the IsReadOnly property of a file object to true. You also use Set-ItemProperty to create and
change registry values and data. For example, you can add a new registry entry to a key and establish or
change its value.

Set-Location cmdlet: Sets the working location to a specified location. That location could be a directory,
a subdirectory, a registry location, or another location stack.

Set-Service cmdlet: Changes the properties of a local or remote service, including status, description,
display name, and start mode. You can use this cmdlet to start, stop, or suspend (pause) a service. To
identify the service, enter its service name or submit a service object, or pipe a service name or service
object to Set-Service.

Show-EventLog cmdlet: Opens Event Viewer on the local computer and displays in it all of the classic
Event logs on the local computer or a remote computer. To open Event Viewer on Windows Vista and
later versions of Windows, the current user must be a member of the Administrators group on the local
computer. The EventLog cmdlets work only on classic Event logs. To get events from logs that use the
Windows Eventing technology in Windows Vista and later versions of Windows, use Get-Event.

Split-Path cmdlet: Returns only the specified part of a path, such as the parent directory, a child direc-
tory, or a file name. It also can display the items that are referenced by the split path and indicate whether
the path is relative or absolute. You can use this cmdlet to display or submit only a selected part of a path.

Start-Process cmdlet: Starts one or more processes on the local computer. To specify the program
that runs in the process, enter an executable file or script file, or a file that can be opened by using a

517

Appendix A: cmdlets

program on the computer. If you specify a non-executable file, Start-Process starts the program that is
associated with the file, much like the Invoke-Item cmdlet. You can use the parameters of Start-Process
to specify options, such as loading a user profile, starting the process in a new window, or using alternate
credentials.

Start-Service cmdlet: Sends a start message to the Windows Service Controller for each of the specified
services. If a service is already running, then the message is ignored without error. You can specify
the services by their service name or display name, or you can use the InputObject parameter to supply
a service object representing the services that you want to start.

Start-Transaction cmdlet: Starts a transaction, which is a series of commands that are managed as
a unit. A transaction can be completed (‘‘committed’’) or it can be completely undone (‘‘rolled back’’),
restoring any data changed by the transaction to its original state. Because the commands in a transaction
are managed as a unit, either all commands are committed or all commands are rolled back. By default,
transactions are rolled back automatically if any command in the transaction generates an error, but you
can use the RollbackPreference parameter to change this behavior. The cmdlets used in a transaction
must be designed to support transactions. Cmdlets that support transactions have a UseTransaction
parameter. To perform transactions in a provider, the provider must support transactions. The Windows
PowerShell Registry provider in Windows Vista and later versions of Windows supports transactions.
You can also use the System.Management.Automation.TransactedString class to include expressions
in transactions on any version of Windows that supports Windows PowerShell. Other Windows Power-
Shell providers can also support transactions. Only one transaction can be active at a time. If you start
a new, independent transaction while a transaction is in progress (neither completed nor undone), the
new transaction becomes the active transaction, and you must commit or roll back the new transac-
tion before making any changes to the original transaction. The Start-Transaction cmdlet is one of a
set of cmdlets that support the transactions feature in Windows PowerShell. For more information, see
about_transactions.

Stop-Computer cmdlet: Shuts down computers remotely. It can also shut down the local computer. You
can use the parameters of Stop-Computer to run the shutdown operations as a background job, to specify
the authentication levels and alternate credentials, to limit the concurrent connections that are created
to run the command, and to force an immediate shutdown. This cmdlet does not require Windows
PowerShell remoting unless you use the AsJob parameter.

Stop-Process cmdlet: Stops one or more running processes. You can specify a process by process name
or process ID (PID), or pass a process object to Stop-Process. Stop-Process works only on processes
running on the local computer. On Windows Vista and later versions, to stop a process that is not owned
by the current user, you must open Windows PowerShell with the ‘‘Run as administrator’’ option. In
addition, you are prompted for confirmation unless you use the Force parameter.

Stop-Service cmdlet: Sends a stop message to the Windows Service Controller for each of the spec-
ified services. You can specify the services by their service name or display name, or you can use the
InputObject parameter to pass a service object representing the services that you want to stop.

Suspend-Service cmdlet: Sends a suspend message to the Windows Service Controller for each of the
specified services. While suspended, the service is still running but its action is halted until resumed,
such as by using Resume-Service. You can specify the services by service name or display name, or you
can use the InputObject parameter to pass a service object representing the services that you want to
suspend.

518

Appendix A: cmdlets

Test-Connection cmdlet: Sends Internet Control Message Protocol (ICMP) echo request packets
(‘‘pings’’) to one or more remote computers and returns the echo response replies. You can use this
cmdlet to determine whether a particular computer can be contacted across an IP network. Use
the parameters of Test-Connection to specify both the sending and the receiving computers, to
run the command as a background job, to set a timeout and number of pings, and to configure the
connection and authentication. Unlike the traditional ‘‘ping’’ command, Test-Connection returns a
Win32_PingStatus object that you can investigate in Windows PowerShell.

Test-Path cmdlet: Determines whether all elements of the path exist. It returns TRUE ($true) if all ele-
ments exist and FALSE ($false) if any are missing. It can also tell whether the path syntax is valid and
whether the path leads to a container or a terminal (leaf) element.

Undo-Transaction cmdlet: Rolls back the active transaction. When you roll back a transaction, the
changes made by the commands in the transaction are discarded and the data is restored to its origi-
nal form. If the transaction includes multiple subscribers, an Undo-Transaction command rolls back
the entire transaction for all subscribers. By default, transactions are rolled back automatically if any
command in the transaction generates an error. However, transactions can be started with a different
rollback preference and you can use this cmdlet to roll back the active transaction at any time. The
Undo-Transaction cmdlet is one of a set of cmdlets that support the transactions feature in Windows
PowerShell. For more information, see about_transactions.

Use-Transaction cmdlet: Adds a script block to an active transaction. This enables you to do transacted
scripting using transaction-enabled .NET objects. The script block can contain only transaction-enabled
.NET objects, such as instances of the System.Management.Automation.TransactedString class. The
UseTransaction parameter, which is optional for most cmdlets, is required when using this cmdlet. The
Use-Transaction cmdlet is one of a set of cmdlets that support the transactions feature in Windows
PowerShell. For more information, see about_transactions.

Wait-Process cmdlet: Waits for one or more running processes to be stopped before accepting input.
In the Windows PowerShell console, this cmdlet suppresses the command prompt until the processes
are stopped. You can specify a process by process name or process ID (PID), or pipe a process object to
Wait-Process. Wait-Process works only on processes running on the local computer.

Write-EventLog cmdlet: Writes an event to an Event log. To write an event to an Event log, the Event log
must exist on the computer and the source must be registered for the Event log. The EventLog cmdlets
work only on classic event logs. To get events from logs that use the Windows Eventing technology in
Windows Vista and later versions, use Get-Event.

cmdlets Related to the Security Snap-in
ConvertFrom-SecureString cmdlet: Converts a secure string (System.Security.SecureString) into
an encrypted standard string (System.String). Unlike a secure string, the encrypted standard string
can be saved in a file for later use. The encrypted standard string can be converted back to its secure
string format by using the ConvertTo-SecureString cmdlet. If an encryption key is explicitly specified
by using the Key or SecureKey parameters, the Rijndael encryption algorithm is used. The key specified
must have a length of 128, 192, or 256 bits because those are the key lengths supported by the Rijndael
encryption algorithm. If no key is specified, then the Windows Data Protection API (DPAPI) is used to
encrypt the standard string representation.

519

Appendix A: cmdlets

ConvertTo-SecureString cmdlet: Converts encrypted standard strings into secure strings. It can also
convert plain text to secure strings. It is used with ConvertFrom-SecureString and Read-Host. The
secure string created by the cmdlet can be used with cmdlets or functions that require a parameter of
type SecureString. The secure string can be converted back to an encrypted, standard string using the
ConvertFrom-SecureString cmdlet. This enables it to be stored in a file for later use. If the standard string
being converted was encrypted with ConvertFrom-SecureString using a specified key, that same key
must be provided as the value of the Key or SecureKey parameter of the ConvertTo-SecureString cmdlet.

Get-Acl cmdlet: Gets objects that represent the security descriptor of a file or resource. The security
descriptor contains the access control lists (ACLs) of the resource. The ACL specifies the permissions that
users and user groups must have in order to access the resource.

Get-AuthenticodeSignature cmdlet: Gets information about the Authenticode signature in a file. If the
file is not signed, the information is retrieved but the fields are blank.

Get-Credential cmdlet: Creates a credential object for a specified user name and password. You can use
the credential object in security operations. The cmdlet prompts the user for a password or user name and
password. Users are prompted through a dialog box or at the command line, depending on the system
registry setting.

Get-ExecutionPolicy cmdlet: Gets the execution policy that is effective in the shell. The execution policy
is determined by the user preference that you set by using Set-ExecutionPolicy and the Group Policy
settings for the Windows PowerShell execution policy. The default is Restricted.

Get-PfxCertificate cmdlet: Gets an object representing each specified .pfx certificate file. A .pfx file
includes both the certificate and a private key.

Set-Acl cmdlet: Changes the security descriptor of a specified resource, such as a file or a registry key,
to match the values in a security descriptor that you supply. To use Set-Acl, use the Path parameter to
identify the resource whose security descriptor you want to change, and use the AclObject parameter
to supply a security descriptor that has the values you want to apply. Set-Acl uses the value of the
AclObject parameter as a model and changes the values in the resource’s security descriptor to match
the values in the AclObject parameter.

Set-AuthenticodeSignature cmdlet: Adds an Authenticode signature to any file that supports Subject
Interface Package (SIP). In a Windows PowerShell script file, the signature takes the form of a block of
text that indicates the end of the instructions executed in the script. If there is a signature in the file when
this cmdlet runs, that signature is removed.

Set-ExecutionPolicy cmdlet: Changes the user preference for the execution policy of the shell. To
run this command on Windows Vista, you must use the Run As Administrator option when starting
Windows PowerShell, even if you are a member of the Administrators group on the computer. The
execution policy is part of the security strategy of Windows PowerShell. It specifies whether you can
load configuration files (including your Windows PowerShell profile) and run scripts, and which scripts,
if any, must be digitally signed before they will run.

cmdlets Related to the Utility Snap-in
Add-Member cmdlet: Adds a user-defined custom member to an instance of a Windows PowerShell object.
Enables you to add the following types of members: AliasProperty, CodeProperty, NoteProperty,

520

Appendix A: cmdlets

ScriptProperty, PropertySet, CodeMethod, MemberSet, and ScriptMethod. You set the initial
value of the member by using the Value parameter. In the case of AliasProperty, ScriptProperty,
CodeProperty, and CodeMethod, you can supply additional information by using the SecondValue
parameter. The additional members are added to the particular instance of the object that you pipe to
Add-Member or specify using the InputObject parameter. The additional member is only available while
that instance exists. You can use the Export-Clixml cmdlet to save the instance, including the additional
members, to a file. The information stored in that file can be used by the Import-Clixml cmdlet to
recreate the instance of the object.

Add-Type cmdlet: Enables you to define a .NET class in your Windows PowerShell session. You can then
instantiate objects (by using the New-Object cmdlet) and use the objects, just as you would use any .NET
object. If you add an Add-Type command to your Windows PowerShell profile, the class will be available
in all Windows PowerShell sessions. You can specify the type by indicating an existing assembly or
source code files, or you can specify source code in line or saved in a variable. You can even specify only
a method and Add-Type will define and generate the class. You can use this feature to make Platform
Invoke (P/Invoke) calls to unmanaged functions in Windows PowerShell. If you specify source code,
Add-Type compiles the specified source code and generates an in-memory assembly containing the new
.NET types. You can use the parameters of Add-Type to specify an alternative language and compiler
(CSharp is the default), compiler options, assembly dependencies, the class namespace, and the names of
the type and the resulting assembly.

Clear-Variable cmdlet: Deletes the data stored in a variable, but it does not delete the variable. As
a result, the value of the variable is NULL (empty). If the variable has a specified data or object type,
Clear-Variable preserves the type of the object stored in the variable.

Compare-Object cmdlet: Compares two sets of objects. One set of objects is the Reference set and the
other is the Difference set. The result of the comparison indicates whether a property value appeared only
in the object from the Reference set (indicated by the <= symbol), only in the object from the Difference
set (indicated by the => symbol) or, if the IncludeEqual parameter is specified, in both objects (indicated
by the == symbol).

ConvertFrom-Csv cmdlet: Creates objects from comma-separated, variable-length (CSV) strings that are
generated by the ConvertTo-Csv cmdlet. You can use the parameters of the ConvertFrom-Csv cmdlet
to specify the column header row, which determines the property names of the resulting objects, to
specify the item delimiter, or to direct ConvertFrom-Csv to use the list separator for the current culture
as the delimiter. The objects that ConvertFrom-CSV creates are CSV versions of the original objects. The
property values of the CSV objects are string versions of the property values of the original objects.
The CSV versions of the objects do not have any methods. You can also use the Export-Csv and
Import-Csv cmdlets to convert objects to CSV strings in a file (and back). These cmdlets are the same as
the ConvertTo-Csv and ConvertFrom-Csv cmdlets, except that they save the CSV strings in a file.

ConvertFrom-StringData cmdlet: Converts a string that contains one or more ‘‘name=value’’ pairs into
a hash table. Because each ‘‘name=value’’ pair must be on a separate line, here-strings are often used as
the input format. The ConvertFrom-StringData cmdlet is considered to be a safe cmdlet that can be used
in the DATA section of a script or function. When used in a DATA section, the contents of the string must
conform to the rules for a DATA section. For details, see about_data_sections.

ConvertTo-Csv cmdlet: Returns a series of comma-separated, variable-length (CSV) strings representing
the objects that you submit. You can then use the ConvertFrom-Csv cmdlet to recreate objects from the
CSV strings. The resulting objects are CSV versions of the original objects that consist of string repre-
sentations of the property values, and no methods. You can also use the Export-Csv and Import-Csv

521

Appendix A: cmdlets

cmdlets to convert .NET objects to CSV strings (and back). Export-Csv is the same as ConvertTo-Csv
except that it saves the CSV strings in a file. You can use the parameters of the ConvertTo-Csv cmdlet
to specify a delimiter other than a comma or to direct ConvertTo-Csv to use the default delimiter for the
current culture. For more information, type get-help export-csv-full and see the Notes section.

ConvertTo-Html cmdlet: Converts .NET objects into HTML that can be displayed in a Web browser. You
can use this cmdlet to display the output of a command in a Web page. You can use the parameters of
ConvertTo-Html to select object properties, to specify a table or list format, to specify the HTML page
title, to add text before and after the object, and to return only the table or list fragment, instead of a strict
DTD page. When you submit multiple objects to ConvertTo-Html, Windows PowerShell creates the table
(or list) based on the properties of the first object that you submit. If the remaining objects do not have
one of the specified properties, then the property value of that object is an empty cell. If the remaining
objects have additional properties, those property values are not included in the file.

ConvertTo-Xml cmdlet: Creates an XML-based representation of one or more .NET objects. To use this
cmdlet, pipe one or more objects to the cmdlet or use the InputObject parameter to specify the object.
When you pipe multiple objects to ConvertTo-XML or use the InputObject parameter to submit multiple
objects, ConvertTo-XML returns a single XML document that includes representations of all the objects.
This cmdlet is similar to Export-Clixml except that Export-Clixml stores the resulting XML in a file.
ConvertTo-XML returns the XML, so you can continue to process it in Windows PowerShell.

Disable-PSBreakpoint cmdlet: Disables breakpoints, points in a script where execution stops temporar-
ily so that you can examine the instructions, which ensures that they are not hit when the script runs.
You can use it to disable all breakpoints, or specify breakpoints by submitting breakpoint objects or
breakpoint IDs. Technically, this cmdlet changes the value of the Enabled property of a breakpoint object
to False. To re-enable a breakpoint, use the Enable-PSBreakpoint cmdlet. Breakpoints are enabled by
default when you create them by using the Set-PSBreakpoint cmdlet. Disable-PSBreakpoint is one of
several cmdlets designed for debugging Windows PowerShell scripts. For more information about the
Windows PowerShell debugger, type get-help about debuggers.

Enable-PSBreakpoint cmdlet: Re-enables disabled breakpoints, points in a script where execution stops
temporarily so that you can examine the instructions. You can use it to enable all breakpoints, or specify
breakpoints by submitting breakpoint objects or breakpoint IDs. Newly created breakpoints are automat-
ically enabled, but you can disable them by using the Disable-PSBreakpoint cmdlet. Technically, this
cmdlet changes the value of the Enabled property of a breakpoint object to True. Enable-PSBreakpoint
is one of several cmdlets designed for debugging Windows PowerShell scripts. For more information
about the Windows PowerShell debugger, type get-help about debuggers.

Export-Alias cmdlet: Exports the aliases in the current session to a file. If the output file specified does
not exist, the cmdlet will create it. Export-Alias can export the aliases in a particular scope or all scopes,
and it can generate the data in CSV format or as a series of Set-Alias commands that you can add to a
session or to a Windows PowerShell profile.

Export-Clixml cmdlet: Creates an XML-based representation of an object or objects and stores it in a file.
You can then use the Import-Clixml cmdlet to recreate the saved object based on the contents of that
file. This cmdlet is similar to ConvertTo-XML except that Export-Clixml stores the resulting XML in
a file. ConvertTo-XML returns the XML, so you can continue to process it in Windows PowerShell.

Export-Csv cmdlet: Creates a comma-separated, variable-length (CSV) file representing the objects you
submit. You can then use the Import-Csv cmdlet to recreate objects from the CSV strings in the files.
The resulting objects are CSV versions of the original objects that consist of string representations of the

522

Appendix A: cmdlets

property values, and no methods. You can also use the ConvertTo-Csv and ConvertFrom-Csv cmdlets
to convert .NET objects to CSV strings (and back). Export-Csv is the same as ConvertTo-Csv except
that it saves the CSV strings in a file. You can use the parameters of the Export-Csv cmdlet to specify a
delimiter other than a comma or to direct Export-Csv to use the default delimiter for the current culture.
When you submit multiple objects to Export-Csv, it organizes the file based on the properties of the
first object you submit. If the remaining objects do not have one of the specified properties, the property
value of the object is null, as represented by two consecutive commas. If the remaining objects have
additional properties, those property values are not included in the file. For more information, type
get-help export-csv -full and see the Notes section.

Export-PSSession cmdlet: Gets cmdlets, functions, aliases, and other command types from another
session on a local or remote computer and saves them in a Windows PowerShell script module file
(.psm1). To add the commands from the script module file to a session, use the Add-Module cmdlet.
Unlike Import-PSSession, which imports commands from another session into the current session,
Export-PSSession immediately saves the commands in a script module file. The commands are not
imported into the current session. To export commands, first use the New-PSSession cmdlet to connect to
the session that has the commands you want to export. Then use the Export-PSSession cmdlet to export
the commands. By default, Export-PSSession exports all commands, except for commands that already
exist in the session, but you can use the PSSnapin, CommandName, and CommandType parameters to specify
the commands to export.

Format-Custom cmdlet: Formats the output of a command as defined in an alternate view. Format-Custom
is designed to display views that are not just tables or lists. You can use the views defined in the
*format.PS1XML files in the Windows PowerShell directory or you can create your own views in new
PS1XML files and use the Update-FormatData cmdlet to add them to Windows PowerShell.

Format-List cmdlet: Formats the output of a command as a list of properties in which each property is
displayed on a separate line. You can use Format-List to format and display all or selected properties of
an object as a list (format-list *). Because more space is available for each item in a list than in a table,
Windows PowerShell displays more properties of the object in the list, and the property values are less
likely to be truncated.

Format-Table cmdlet: Formats the output of a command as a table, with selected properties of the object
in each column. The object type determines the default layout and properties displayed in each column,
but you can use the Property parameter to select the properties that you want to see. You can also use
a hash table to add calculated properties to an object before displaying it and to specify the column
headings in the table. To add a calculated property, use the Property parameter and type a hash table
for the parameter value. Create an Expression key in the hash table and assign to the key an expression
that calculates a value. The hash table can also have Label, Format, and Alignment keys.

Format-Wide cmdlet: Formats objects as a wide table that displays only one property of each object. You
can use the Property parameter to determine which property is displayed.

Get-Alias cmdlet: Gets the aliases (alternative names for commands and executable files) in the current
session. This includes built-in aliases, aliases that you have set or imported, and aliases that you have
added to your Windows PowerShell profile. By default, Get-Alias takes an alias and returns the command
name. When you use the Definitionparameter, Get-Alias takes a command name and returns its aliases.

Get-Culture cmdlet: Gets information about the current culture settings. This includes information
about the current language settings on the system, such as the keyboard layout, and the display format
of items such as numbers, currency, and dates. You can also use the Get-UICulture cmdlet, which gets

523

Appendix A: cmdlets

the current user interface culture on the system. The UI culture determines which text strings are used
for user interface elements, such as menus and messages.

Get-Date cmdlet: Gets a DateTime object that represents the current date or a date that you specify. It
can format the date and time in several Windows and UNIX formats. You can use Get-Date to generate
a date or time character string, and then send the string to other cmdlets or programs.

Get-Host cmdlet: Gets an object that represents the program hosting Windows PowerShell. The default
display includes the Windows PowerShell version number and the current region and language settings
that the host is using, but the host object contains a wealth of information, including detailed information
about the version of Windows PowerShell currently running, the current culture, and the UI culture
of Windows PowerShell. You can also use this cmdlet to customize features of the host program user
interface, such as text and background colors.

Get-Member cmdlet: Gets the ‘‘members’’ (properties and methods) of objects. To specify the object,
use the InputObject parameter or pipe an object to Get-Member. To retrieve information about static
members (members of the class, not of the instance), use the Static parameter. To get only certain types
of members, such as NoteProperties, use the MemberType parameter.

Get-PSBreakPoint cmdlet: Gets all of the breakpoints, points in a script where execution stops tem-
porarily so that you can examine the instructions, that are set in the current console. You can also get
only a selected breakpoint by specifying the breakpoint ID. Get-PSBreakpoint is one of several cmdlets
designed for debugging Windows PowerShell scripts. For more information about the Windows Power-
Shell debugger, type get-help about debuggers.

Get-PSCallStack cmdlet: Displays the current call stack. Although it is designed to be used with the
Windows PowerShell debugger, you can use this cmdlet to display the call stack in a script or function
outside of the debugger. To run a Get-PSCallStack command while in the debugger, type k or get-
pscallstack.

Get-Random cmdlet: Gets a randomly selected number. If you submit a collection of objects to
Get-Random, it gets one or more randomly selected objects from the collection. Without parameters or
input, Get-Random returns a randomly selected 32-bit unsigned integer between 0 and Int32.MaxValue
(0x7FFFFFFF, or 2,147,483,647). You can use the parameters of Get-Random to specify a seed number,
minimum and maximum values, and the number of objects returned from a submitted collection.

Get-TraceSource cmdlet: Gets the trace sources for Windows PowerShell components currently in use.
You can use the data to determine which Windows PowerShell components you can trace. When tracing,
the component generates detailed messages about each step in its internal processing. Developers use the
trace data to monitor data flow, program execution, and errors. The tracing cmdlets were designed for
Windows PowerShell developers, but they are available to all users.

Get-UICulture cmdlet: Gets information about the current user interface (UI) culture settings for Win-
dows. The UI culture determines which text strings are used for user interface elements, such as menus
and messages. You can also use the Get-Culture cmdlet, which gets the current culture on the system.
The culture determines the display format of items such as numbers, currency, and dates.

Get-Unique cmdlet: Compares each item in a sorted list to the next item, eliminates duplicates,
and returns only one instance of each item. The list must be sorted in order for the cmdlet to work
properly.

524

Appendix A: cmdlets

Get-Variable cmdlet: Gets the Windows PowerShell variables in the current console. You can retrieve
just the values of the variables by specifying the ValueOnly parameter and you can filter the variables
returned by name.

Group-Object cmdlet: Displays objects in groups based on the value of a specified property. Group-
Object returns a table with one row for each property value and a column that displays the number of
items with that value. If you specify more than one property, Group-Object first groups by the values of
the first property, and then, within each property group, it groups by the value of the next property.

Import-Alias cmdlet: Imports an alias list from a file.

Import-Clixml cmdlet: Imports a CLIXML file with data that represents .NET objects and creates the
objects in Windows PowerShell.

Import-Csv cmdlet: Creates objects from comma-separated, variable-length (CSV) files that are generated
by the Export-Csv cmdlet. You can use the parameters of the Import-Csv cmdlet to specify the column
header row, which determines the property names of the resulting objects, to specify the item delimiter,
or to direct Import-Csv to use the list separator for the current culture as the item delimiter. The objects
that Import-CSV creates are CSV versions of the original objects. The property values of the CSV objects
are string versions of the property values of the original objects. The CSV versions of the objects do not
have any methods. You can also use the ConvertTo-Csv and ConvertFrom-Csv cmdlets to convert objects
to CSV strings (and back). These cmdlets are the same as the Export-Csv and Import-Csv cmdlets except
that they do not save the CSV strings in a file.

Import-LocalizedData cmdlet: Designed to enable scripts to display user messages in the UI language
selected by the current user. Import-LocalizedData imports data from .psd1 files in language-specific
subdirectories of the script directory into a local variable specified in the command. The cmdlet selects the
subdirectory and file based on the value of the $PsUICulture automatic variable. When you use the local
variable in the script to display a user message, the message appears in the user’s UI language. You can
use the parameters of Import-LocalizedData to specify an alternate UI culture, path, and filename, and
to suppress the error message that appears if the .psd1 files are not found. The Import-LocalizedData
cmdlet supports script internationalization in Windows PowerShell 2.0. This initiative aims to better
serve users worldwide by making it easy for scripts to display user messages in the UI language
of the current user. For more information, including the format of the .psd1 files, type get-help
about script internationalization.

Import-PSSession cmdlet: Imports cmdlets, functions, aliases, and other command types from a session
on a local or remote computer into the current session. You can import any command that Get-Command
can find in the other session. Use an Import-PSSession command to import commands from a cus-
tomized shell, such as an Exchange shell, or from a session that includes Windows PowerShell
modules and snap-ins, or other elements that are not in the current session. To import commands,
first use the New-PSSession cmdlet to connect to the session from which you will import. Then use
the Import-PSSession cmdlet to import the commands. By default, Import-PSSession imports all
commands, except for commands that exist in the current session. To overwrite a command, use the
CommandName parameter. You can use imported commands just as you would use any command in
the session. When you use an imported command, the imported part of the command actually runs in
the session from which it was imported, but the remote operations are handled entirely by Windows
PowerShell. You need not even be aware of them, except that you must keep the connection to the
other session (PSSession) open. If you close it, the imported commands are no longer available. Because

525

Appendix A: cmdlets

imported commands might take longer to run than local commands, Import-PSSession adds an AsJob
parameter to every imported command. This parameter enables you to run the command as a Windows
PowerShell background job. For more information, see about_jobs. When you use Import-PSSession,
Windows PowerShell adds the imported commands to a temporary module that exists only in your
session, and returns an object that represents the module. To make the imported commands available in
other sessions, use the Export-PSSession cmdlet.

Invoke-Expression cmdlet: Evaluates or runs a specified string as a command, and returns the results
of the expression or command. Without Invoke-Expression, a string submitted at the command line
would be returned (echoed) unchanged.

Measure-Command cmdlet: Runs a script block or cmdlet internally, times the execution of the operation,
and returns the execution time.

Measure-Object cmdlet: Calculates the property values of certain types of objects. Measure-Object per-
forms three types of measurements, depending on the parameters in the command. The Measure-Object
cmdlet performs calculations on the property values of objects. It can count objects and calculate the min-
imum, maximum, sum, and average of the numeric values. For text objects, it can count and calculate the
number of lines, words, and characters.

New-Alias cmdlet: Creates a new alias in the current Windows PowerShell session. Aliases created by
using New-Alias are not saved after you exit the session or close Windows PowerShell. You can use the
Export-Alias cmdlet to save your alias information to a file; and you can later use Import-Alias to
retrieve that saved alias information.

New-Object cmdlet: Creates an instance of a .NET or COM object. You can specify either the type of a
.NET class or a Programmatic Identifier (ProgID) of a COM object. By default, you type the fully qual-
ified name of a .NET class, and the cmdlet returns a reference to an instance of that class. To create
an instance of a COM object, use the ComObject parameter and specify the ProgID of the object as its
value.

New-TimeSpan cmdlet: Creates a TimeSpan object that represents a specified period of time. You can use
a TimeSpan object to add or subtract time from DateTime objects.

New-Variable cmdlet: Creates a new variable in Windows PowerShell. You can assign a value to the vari-
able while creating it, or assign or change the value after it is created. Use the parameters of New-Variable
to set the properties of the variable, such as those that create read-only or constant variables, to set the
scope of a variable, and to determine whether variables are public or private. Typically, you create a new
variable by typing the variable name and its value, such as ‘‘$var = 3,’’ but you can use the New-Variable
cmdlet to use its parameters.

Out-Default cmdlet: Sends the output to the default formatter and the default output cmdlet. This
cmdlet has no effect on the formatting or output. It is a placeholder that enables you to write your own
Out-Default function or cmdlet.

Out-File cmdlet: Sends output to a file. You can use this cmdlet instead of the redirection operator (>)
when you need to use its parameters.

526

Appendix A: cmdlets

Out-GridView cmdlet: Sends the output from a command to a grid view window where the output is
displayed in an interactive table. This feature requires Microsoft .NET Framework 3.5 with Service Pack
1. You can use the following features of the table to examine your data:

❑ Search — Use the Search in Results box at the top of the window to search the text in the table.
You can search for text in a particular column, search for literals, and search for multiple words.

❑ Sort — To sort the data, click a column header. Click again to toggle from ascending to descend-
ing order.

❑ Group — You can arrange the data in groups with the same property value. To turn on group-
ing, right-click anywhere in the column heading row and select Show in Groups. Then, click a
column heading to group the data by the values in that column. To turn off grouping, right-click
the column header row and select Show in Groups again.

❑ Filter — Use the Out-GridView filter pane to create rules to filter the data. This is very useful for
very large data sets, such as Event logs.

❑ Copy and paste — To copy rows of data from Out-GridView, use Ctrl+C (copy). You can paste
the data into any text or spreadsheet program. The command output that you send cannot be
preformatted, such as by using the Format-Table or Format-Wide cmdlets. For more informa-
tion, see the Notes and Examples.

Out-Host cmdlet: Sends output to the Windows PowerShell host for display. The host displays the output
at the command line. Because Out-Host is the default, you do not need to specify it unless you want to
use its parameters to change the display.

Out-Null cmdlet: Sends output to NULL, in effect deleting it.

Out-Printer cmdlet: Sends output to the default printer or to an alternate printer, if one is specified.

Out-String cmdlet: Converts the objects that Windows PowerShell manages into an array of strings.
By default, Out-String accumulates the strings and returns them as a single string, but you can use
the stream parameter to direct Out-String to return one string at a time. This cmdlet enables you to
search and manipulate string output as you would in traditional shells when object manipulation is less
convenient.

Read-Host cmdlet: Reads a line of input from the console. You can use it to prompt a user for input.
Because you can save the input as a secure string, you can use this cmdlet to prompt users for secure
data, such as passwords, as well as shared data.

Remove-PSBreakpoint cmdlet: Deletes a breakpoint. Enter a breakpoint object or a breakpoint ID.
When you remove a breakpoint, the breakpoint object is no longer available or functional. If you have
saved a breakpoint object in a variable, the reference still exists but the breakpoint does not function.
Remove-PSBreakpoint is one of several cmdlets designed for debugging Windows PowerShell scripts.
For more information about the Windows PowerShell debugger, type get-help about debuggers.

Remove-Variable cmdlet: Deletes a variable and its value from the scope in which it is defined, such as
the current session. You cannot use this cmdlet to delete variables that are set as constants or those that
are owned by the system.

527

Appendix A: cmdlets

Select-Object cmdlet: Gets only the specified properties of an object or set of objects. It can also select
unique objects from an array of objects or it can select a specified number of objects from the beginning
or end of an array of objects. If you use Select-Object to select specified properties, it copies the values
of those properties from the input objects and creates new objects that have the specified properties and
copied values. Use the Property parameter to specify the properties you want to select. Alternately, use
the First, Last, Unique, Skip, and Index parameters to select particular objects from an array of input
objects. For more specific object filtering, use the Where-Object cmdlet. You can also use Select-Object
to add calculated properties to an object. To add a calculated property, use the Property parameter and
type a hash table for the parameter value. Create an Expression key in the hash table and assign to the
key an expression that calculates a value. The hash table can also have a Name key.

Select-String cmdlet: Searches for text and text patterns in input strings and files. You can use
it like Grep in UNIX, and Findstr in Windows. Select-String is based on lines of text. By default,
Select-String finds the first match in each line and, for each match, it displays the filename, line
number, and all text in the line containing the match. However, you can direct it to detect multiple
matches per line, display text before and after the match, or display only a Boolean (true or false) that
indicates whether a match is found. Select-String uses regular expression matching, but it can also
perform a simple match that searches the input for the text that you specify. Select-String can display
all of the text matches or stop after the first match in each input file. It can also display all text that does
not match the specified pattern, You can also specify that Select-String expect a particular character
encoding, such as when searching files of Unicode text.

Send-MailMessage cmdlet: Sends an e-mail message from within Windows PowerShell.

Set-Alias cmdlet: Creates or changes an alias (alternate name) for a cmdlet or for a command element,
such as a function, a script, a file, or other executable. You can also use Set-Alias to reassign a current
alias to a new command, or to change any of the properties of an alias, such as its description. Unless you
add the alias to the Windows PowerShell profile, changes to an alias are lost when you exit the session or
close Windows PowerShell.

Set-Date cmdlet: Changes the system date and time on the computer to a date and time that you specify.
You can specify a new date and/or time by typing a string or by passing a DateTime or TimeSpan object
to Set-Date. To specify a new date or time, use the Date parameter. To specify a change interval, use the
Adjust parameter.

Set-PSBreakpoint cmdlet: Sets a breakpoint in a script or in any command run in the current session.
You can use Set-PSBreakpoint to set a breakpoint before executing a script or running a command, or
during debugging, when stopped at another breakpoint. Note: Set-PSBreakpoint cannot set a breakpoint
on a remote computer. To debug a script on a remote computer, copy the script to the local computer and
then debug it locally. Each Set-PSBreakpoint command creates one of the following three types of
breakpoints:

❑ Line breakpoint — Sets breakpoints at particular line and column coordinates

❑ Command breakpoint — Sets breakpoints on commands and functions

❑ Variable breakpoint — Sets breakpoints on variables

You can set a breakpoint on multiple lines, commands, or variables in a single Set-PSBreakpoint
command, but each Set-PSBreakpoint command sets only one type of breakpoint. At a breakpoint,
Windows PowerShell temporarily stops executing and gives control to the debugger. The command

528

Appendix A: cmdlets

prompt changes to "<DBG>" and a set of debugger commands become available for use. However, you
can use the Action parameter to specify an alternative response, such as conditions for the breakpoint or
instructions to perform additional tasks (e.g., logging or diagnostics). The Set-PSBreakpoint cmdlet is
one of several cmdlets designed for debugging Windows PowerShell scripts. For more information about
the Windows PowerShell debugger, type help about debuggers.

Set-TraceSource cmdlet: Configures, starts, and stops a trace of a Windows PowerShell component.
You can use it to specify which components will be traced and where the tracing output is sent.

Set-Variable cmdlet: Assigns a value to a specified variable or changes the current value. If the variable
does not exist, the cmdlet creates it.

Sort-Object cmdlet: Sorts objects in ascending or descending order based on the values of the object’s
properties. You can specify a single property or multiple properties (for a multi-key sort), and select a
case-sensitive or case-insensitive sort. You can also direct Sort-Object to display only the objects with
a unique value for a particular property.

Start-Sleep cmdlet: Suspends the activity in a script or session for the specified period of time. You
can use it for many tasks, such as waiting for an operation to complete, or pausing before repeating an
operation.

Tee-Object cmdlet: Sends the output of a command in two directions (like the letter T). It stores the
output in a file or variable, and sends it down the pipeline. If Tee-Object is the last command in
the pipeline, the command output is displayed in the console.

Trace-Command cmdlet: Configures and starts a trace of the specified expression or command. It works
like Set-TraceSource except that it applies only to the specified command.

Update-FormatData cmdlet: Updates and adds format.ps1xml files to the current console. You can use
it to reload currently loaded files, to add new format.ps1xmls files to the console, or to reorder the
precedence of the files. The Windows PowerShell formatting files are XML files with a .ps1xml filename
extension. The XML tags in the formatting files define the default display views for each .NET object
that Windows PowerShell displays. You can create your own format .ps1xml files to change an existing
object view or to create views for a new object. You do not need to restart the shell to update the format
data. When used without parameters, Update-FormatData reloads all currently loaded formatting files,
including files added to the current console with a previous Update-FormatData command. Use this
command to reload changed files.

Update-List cmdlet: Adds and removes items from a property value of an object, and then returns
the updated object. This cmdlet is designed for properties that contain collections of objects. The Add
and Remove parameters add and remove individual items from the collection, respectively. The Replace
parameter replaces the entire collection. If you don’t specify a property in the command, Update-List
returns an object that describes the update, instead of updating the object. You can submit the update object
to cmdlets that change objects, such as Set-* cmdlets. This cmdlet works only when the property that is
being updated supports the IList interface that Update-List uses. Also, any Set-* cmdlets that accept
an update must support the IList interface. The core cmdlets installed with Windows PowerShell do not
support this interface. To determine whether a cmdlet supports Update-List, see the cmdlet help topic.

Update-TypeData cmdlet: Updates the current extended type configuration by reloading the
*.types.ps1xml files into memory. Extended type information is normally loaded when Windows

529

Appendix A: cmdlets

PowerShell requires the type information it contains. The Update-TypeData cmdlet can be used to
preload all type information. It is particularly useful when you are developing types and want to load
those new types for testing purposes.

Write-Debug cmdlet: Writes debug messages to the console from a script or command. By default, debug
messages are not displayed in the console, but you can display them by using the Debug parameter or the
$DebugPreference variable.

Write-Error cmdlet: Writes an error to the console. Use the Message parameter to specify the text of the
error message. Use the other parameters to provide details about the error, and to explain how and why it
occurred, and how the user should respond. You can also use the ErrorRecord or Exception parameters
to describe the error, instead of an error message.

Write-Host cmdlet: Customizes output. You can specify the color of text by using the ForegroundColor
parameter, and you can specify the background color by using the BackgroundColor parameter. Use
the Separator parameter to specify a string to use to separate displayed objects. The particular result
depends on the program that is hosting Windows PowerShell.

Write-Output cmdlet: Sends the specified object down the pipeline to the next command. If the command
is the last in the pipeline, then the object is displayed in the console. Write-Output sends objects down
the primary pipeline, also known as the output stream or the success pipeline. To send error objects down
the error pipeline, use Write-Error. This cmdlet is typically used in scripts to display strings and other
objects on the console. However, because the default behavior is to display the objects at the end of a
pipeline, it is generally not necessary to use the cmdlet. For example, "get-process | write-output" is
equivalent to "get-process."

Write-Progress cmdlet: Displays a progress bar in a Windows PowerShell command window that
depicts the status of a running command or script. You can select the indicators that the bar reflects and
the text that appears above and below the progress bar.

Write-Verbose cmdlet: Writes text to the verbose message stream in Windows PowerShell. Typically,
the verbose message stream is used to deliver information about command processing that is used
for debugging a command. When you use the Write-Verbose cmdlet for your detailed information,
users can decide whether they want to display or hide the information by setting the value of the
$VerbosePreference variable.

Write-Warning cmdlet: Writes a warning message to the Windows PowerShell host. The response
to the warning depends on the value of the user’s $WarningPreference variable and the use of the
WarningAction common parameter.

530

In
de
x

Index

SYMBOLS
!, 36, 50
$?, 114
$_, 114
%=, 50
*
string operator, 52
wildcard, 100

*=, 50
+
concatenation, 47, 49, 52
positive number, 50

+ =, 50
−
decrements, 50
negative number, 50

− =, 50
/=, 50
=, 50
[,], 101
` (back tick)
concatenation and, 209, 225
escape $ and, 148, 201, 203, 213

. (current directory) , 97
++ (increment), 50
.. (parent directory) , 97
? (wildcard) , 101
#, comments and, 21, 60

A
abstract classes, 162
access control lists (ACLs), 520
AccessLevel parameter, 214, 215
ACLs (access control lists), 520
Add-Computer, 512
Add-Content, 106, 107, 512
Add-History, 507
Add-Member, 520
add-num.ps1, 20, 21, 22
Add-PSSnapin, 243–244, 260, 261, 507
Add-PSSnapinSqlServerCmdletSnapin100,

244
Add-PSSnapinSqlServerProviderSnapin100,

244
Address Windowing Extensions (AWE) , 356, 402, 404
Add-Type, 521

admin database, 328, 468
administrative event logs, 124
AdventureWorksTest, 297–298
Agent service, 148, 173, 176, 177, 178, 199, 200,

203, 383, 384, 386, 391, 397
aliases. See client aliases
All Programs, 11
ALTER_DATABASE, 235
ALTER_LOGIN, 233
ALTER_PROCEDURE, 236
Analysis Services, 199, 200, 378
analytic event logs, 124
-and, 36, 50
ANSI SQL, 220. See also WQL
ANSI-standard join clauses, 323–324
Appendix A (cmdlets), 507–530. See also cmdlets
Application event log, 126–127
f ltering, 168, 430

args, 78, 81
arguments, 78–80
def ning, 78–79
as switch, 79

arrays, 48–49
asterisk (*)
string operator, 52
wildcard, 100

AUDIT_LOGIN_FAILED, 234
authentication, SQL Server, 254, 255
Auto Create Statistics, 325
Auto Update Statistics, 325
Auto_Close, 325, 480
‘‘Auto_Close and Auto_Shrink Off’’ policy, 480–485
AutomatedPolicyEvaluationMode property,

269, 270
automatic variables, 113–115
Auto_Shrink, 325, 480
availability, disaster recovery and, 327–328
AWBuildVers ion table, 243
AWE (Address Windowing Extensions), 356, 402, 404
AWEAllocated table, 402, 407

B
back tick (`)
concatenation and, 209, 225
escape $ and, 148, 201, 203, 213

Backup-DataBase.ps1

Backup-DataBase.ps1, 289, 290
backups, 308–313, 451
best practice, 327
database, 308–310
differential, 288, 308, 312
full, 288, 308
monitoring, 468–472
restore, 313–316
full backup, 313
transaction log backup and full backup, 313–316

SMO.Backup and, 309
SMO.BackupDeviceitem and, 309
SQLConnection class and, 309
tempdb and, 327
transaction log, 288, 308, 311
uspBackupDB, 288–289

Batch-Test.bat, 17, 18
best practices. See also standards
data protection, 327
database design, 324–327
Microsoft Best Practices: Maintenance, 270
PowerShell coding, 329–331
Set-StrictMode and, 511
standards and, 317

binary large objects (BLOBs), 214, 326
BLOBs (binary large objects), 214, 326
‘‘blocked process threshold’’ option, 229, 440, 441,

442, 443, 449
BLOCKED_PROCESS_REPORT, 229, 439
blockings, 229–232, 439–444
bottlenecks, 401, 409
Browser service, 199, 200, 216, 479
Business Intelligence Development Studio, 378

C
calc, 17
calculate-arith2.ps1, 60–61, 72
calculate-arith3.ps1, 69–70
calculate-arith4.ps1, 73–74
calculate-arith.ps1, 59–60, 80–81
calculator (Windows), 17
Caption, 179, 186
CATCH block, 323
centralized inventory server, 328, 333, 409
-ceq, 35, 51
c:test.log, 66, 67
-cge, 51
-cgt, 51
CH0DE1, 201, 208, 209, 210, 222, 334, 368, 435,

479
Change, 173, 178
ChangeDefaultPortNumber.ps1, 212–213
ChangeStartMode, 173, 177
ChangeStartupParameters.ps1, 216–217
Check constraint, 320
CheckOnChanges , 270

CheckOnSchedule, 270
Checkpoint-Computer, 512
CheckPowershellPreqs.bat (listing 1–1), 3–5
Check-Services function, 423–424
Check-Services.ps1, 424–425
Check-SqlServices function, 425–426
Check-SqlServices.ps1, 426–427
child scopes, 86, 87, 99, 117, 511
CIM (Common Information Model) repository, 161,

162, 220
CIM Studio, 162
CIMOM (Common Information Model Object Manager) ,

161, 162
class library, SMO, 290
classes, 159. See also specifi classes
abstract, 162
ClienNetworkProtocol, 203
dynamic, 162
extension, 162, 198
hierarchy, 162
.NET, 6, 209, 221, 265, 283, 521, 526
Policy, 268, 273, 277, 278
server events, 220
ServerNetworkProtocolProperty, 211, 212,

213, 393, 394
SqlService, 198, 212, 216, 427
SqlServiceAdvancedProperty, 216, 217, 218
static, 162
StdRegProv, 190, 191, 192, 193
Win32_Environment, 186, 187, 189
Win32_LogicalDisk, 95, 162, 163, 453, 457
Win32_NTEventlogFile, 163, 164
Win32_NTLogEvent, 163, 165, 166, 167,

168, 169
Win32_Process, 163, 179–186
Win32_Service, 163, 170–179

-cle, 51
Clear-Content, 106, 107, 512
Clear-EventLog, 136, 137, 512
Clear-History, 508
Clear-Item, 512
Clear-ItemProperty, 512
Clear-Variable, 112, 120, 521
ClienNetworkProtocol class, 203
client aliases, 207–211
client network protocols, 203–207
client tools (SQL Server) , 378
-clike, 51
-clt, 51
cluster installation example (SQL Server 2008) ,

395–399
ClusterTemplate.txt, 395–397
Install-Instance.ps1, 397–398

ClusterNodes table, 350–354
schema, 351
script for creating, 350–351
Upsert-ClusterNode.ps1, 353–354
uspUpsertClusterNodes.sql, 351–353

532

In
de
xcmdlets

Clusters table, 346–350
CreateClusters.sql, 347
schema, 346
Upsert-Cluster.ps1, 348–350
uspUpsertClusters.sql, 347–348

ClusterTemplate.txt, 395–397
-cmatch, 51
cmd.exe, 2, 16, 22, 96, 508
cmdlets, 16, 18–19, 507–530
Add-Content, 106, 107, 512
Add-History, 507
Add-PSSnapin, 243–244, 260, 261, 507
Add-PSSnapinSqlServerCmdletSnapin100,

244
Add-PSSnapinSqlServerProvider

Snapin100, 244
change location with, 96–98
Clear-Content, 106, 107, 512
Clear-EventLog, 136, 137, 512
Clear-History, 508
Clear-Variable, 112, 120, 521
command shell and, 22–23
Convert-UrnToPath, 246, 258
Copy-Item, 99, 102, 103, 512
Core snap-in and, 507–511
Debug-Process, 152, 513
Decode-SqlName, 246, 256, 257, 258
documentation, 31
Encode-SqlName, 246, 256, 257, 258
Enter-PSSession, 508, 510
event logs and, 136–140
eventing, 221
Exit-PSSession, 508
f ltering and, 34–38
Format-Custom, 39, 523
Format-List, 27, 39, 40, 41, 42, 523
Format-Table, 39, 40, 41, 42, 198, 523
formatting and, 39–42
Format-Wide, 39, 523, 527
Get-ChildItem, 99, 100, 101, 121, 247, 248,

249, 252, 256, 262
Get-Command, 19, 25, 245, 246, 508
Get-Content, 62, 63, 89, 106, 107
Get-Event, 221, 222, 435, 515, 516, 517, 519
Get-Eventlog, 129, 130, 132, 133, 134, 136,

139, 429, 430, 431, 513
Get-EventSubscriber, 221, 223, 224, 435
Get-Help, 31–38, 507
Get-History, 115
Get-Item, 249, 254, 261, 280, 513
Get-Location, 96, 97, 249, 513, 514
Get-Member. See Get-Member
Get-Process. See Get-Process
Get-PSBreakpoint, 19
Get-PSCallStack, 19
Get-PSDrive, 19, 93–94, 108, 163, 246, 514
Get-PSProvider, 19, 94–95
Get-PSSession, 19

Get-PSSessionConfiguration, 19
Get-PSSnapin, 19, 24, 509
Get-Service, 39, 144–146
Get-Variable, 112, 118–119
Get-WmiObject, 53, 95, 162, 163, 164, 514
Invoke-History, 115, 510
Invoke-PolicyEvaluation, 246, 278, 280,

281
Invoke-Sqlcmd, 246, 253–255
Limit-EventLog, 136, 140, 515
list, 507–530
manage f les/directories with, 98–106
manage variables with, 111, 112
Management snap-in and, 512–519
Microsoft.PowerShell.core, 24–25
Microsoft.PowerShell.Diag nostics, 27
Microsoft.PowerShell.host, 25
Microsoft.PowerShell.Manag ement, 25–26
Microsoft.P owerShell.Security, 26
Microsoft.PowerShell.Utility, 27
Microsoft.WsMan.Manag ement, 28
Move-Item, 99, 105, 515
New-Item, 99, 101, 102, 116, 117, 118, 515
New-Variable, 112, 116, 117–118, 526
object oriented, 44
Out-Default, 39, 526
Out-File, 136, 526
Out-GridView, 527
Out-Host, 527
Out-Null, 527
Out-Printer, 527
Out-String, 527
Pop-Location, 96, 98, 515
processes and, 151–157, 513–514, 517–519, 522
Push-Location, 96, 98, 516
Read-Host, 58–59, 527
Register-WmiEvent, 221, 222, 435
Remove-Event, 221, 223, 224, 435, 516
Remove-EventLog, 137, 516
Remove-Item, 99, 104, 516
Remove-Variable, 112, 119–120, 527
Rename-Item, 99, 105, 106, 516
Security snap-in and, 519–520
Select-Object, 34, 37, 95, 100, 165, 166, 168,

172, 187, 198, 203, 204, 206, 263, 528
services and, 143–151
Set-Content, 65, 66, 89, 106, 107, 517
Set-ExecutionPolicy, 22, 26, 520
Set-Item, 121, 517
Set-Location, 21, 22, 96, 97, 517
Set-PSDebug, 71, 72, 73, 74, 75, 511
Set-Service, 150–151, 517
Set-StrictMode, 511
Set-Variable, 112, 119, 529
Show-EventLog, 136, 137, 138, 140, 513, 517
snap-ins. See snap-ins
sorting and, 38–39
Start-Process, 152, 517, 518

533

cmdlets (continued)

cmdlets (continued)
Start-Service, 148–149
Start-Transcript, 25, 90, 91
Stop-Process, 155–157, 522
Stop-Service, 146–148
Stop-Transcript, 25, 90, 91
syntax, 28–31
Unregister-Event, 221, 223, 224, 435
Utility snap-in and, 520–530
verb-noun format, 18, 28, 329
Wait-Process, 152, 519
Where-Object, 25, 30, 31, 34, 35, 100, 119, 132
Write-Debug, 73–74, 75
Write-EventLog, 136, 138, 139, 519
Write-Host, 28, 59, 60, 61, 62, 64, 65, 530
Write-Output, 64, 65, 473, 530

-cne, 35, 51
-cnotlike, 51
-cnotmatch, 51
coding standard (PowerShell) , 329–331
Collect-HostPerfmon.ps1, 414–416
Collect-SQLPerfmonData.ps1, 406–407
columns
adding, 307–308
listing, 305–306
naming conventions, 319
removing, 306–307

-command, 22, 23
command chaining, 25, 30–31
command console, 12, 13
launching PowerShell with, 11

command shell, 22–23
CommandLine, 179, 180, 186
command-line interfaces, GUIs v ., 1–2
commands
cmdlets. See cmdlets
native, 16–18
script, 20–22
shell function. See functions
types, 16

comments
and, 21, 60
best practice, 330
multiline, 21
stored procedures and, 321–322

Common Information Model Object Manager (CIMOM) ,
161, 162

Common Information Model (CIM) repository, 161,
162, 220

Community Technology Preview, 3. See also
PowerShell

Compact edition, 378
Compare-Object, 521
comparison operators, 35, 51–52. See also specifi

comparison operators
Complete-Transaction, 512
-computername option, 151

-computerName parameter, 163, 164, 175, 201,
208

concatenation
+, 47, 49, 52, 59
back tick and, 209, 225

ConcatName, 78, 79, 85, 89, 90
conditional statements, 52–54
conditions, 260, 263–268
Create method, 265
Drop method, 266

Configura ion Manager, 185, 197, 218, 378. See also
WMI Provider for Configura ion Management

-confirm switch parameter, 30, 137, 147, 148,
149, 156, 157

Connectivity Components (SQL Server) , 378
console, writing to, 64–65
consumer (WMI) , 162
-contains, 35
ConvertFrom-Csv, 521
ConvertFrom-SecureString, 519
ConvertFrom-StringData, 521
Convert-Path, 512
ConvertTo-Csv, 521
ConvertTo-Html, 522
ConvertTo-SecureString, 520
ConvertTo-Xml, 522
Convert-UrnToPath, 246, 258
Copy-Item, 99, 102, 103, 512
Copy-ItemProperty, 512
Core snap-in, 24–25
cmdlets related to, 507–511

CreatDiskUsagebyServer.sql, 455–456
Create method, 265
CreateClusters.sql, 347
CREATE_DATABASE, 236
CreateDatabaseSpace.sql, 461–462
CreateDatabases.ps1, 368–369
CreateDiskSpace.sql, 452
CreateHosts.sql, 337–338
CreateKey method, 193
CREATE_LOGIN, 233
CreatePolicy.ps1, 273–275
CREATE_PROCEDURE, 237
CreateServerAlias2008.ps1, 211
Create-Servers.ps1, 356
CreationDate, 179, 180
CSName, 179
current directory (.) , 97
cursors, 322
C:MyPs Transcripts.txt file 90, 91

D
Data Defini ion Language. See DDL
data protection standards/best practices, 327
data queries, 221
‘‘Database Auto Options Disabled’’ policy, 481–485

534

In
de
xDROP_DATABASE

Database Engine, 214, 226, 328, 437
Database Engine Services, 378, 436, 441, 446
Database Engine Tuning Advisor, 378
databases. See also tables; specifi databases
admin, 328, 468
AdventureWorksTest, 297–298
best practices, 325
DDL scripts and, 487–489
design standards/best practices, 324–327
f le growth, monitoring, 461–468
f le location, 328
monitoring, 235–236
MyDB2, 298–299
MyDBTest, 299–304
naming conventions, 318
objects, monitoring, 236–239
performance and, 326
scratch, 328
size of, 325
SMOs and, 297–304

Databases table, 368–373
CreateDatabases.ps1, 368–369
schema, 373
Upsert-Database.ps1, 370–373
uspUpsertDatabases.sql, 369–370

DatabaseSpace table, 461–468
creation of, 461–462
schema, 461
utilization of, 467–468

DataCollection, 247
DataSet class, 284, 285
date values, variables and, 47
date/datetime data types, 323
dbaLib.ps1, 224
adding snap-ins (script) and, 260–261

dbaLib.ps1, 465
dba_MonitorBackups stored procedure,

479, 480
DBO as object owner, 321
dbo schema, 321
DCOM security, 160
dcomcnfg, 160
DDL (Data Defini ion Language), 219, 246, 487
DDL scripts, 487–506. See also scripts
databases, 487–489
functions, 500–501
schemas, 489–491
SMO and, 487
stored procedures, 498–500
tables, 494–496
user views, 496–498
user-def ned data types, 491–494
users, 503–506
XML schemas, 502–503

DDL_LOGIN_EVENTS, 233
DDL_PROCEDURE_EVENTS, 236
DDL_SERVER_LEVEL_EVENTS, 235
DEADLOCK_GRAPH trace event class, 226, 444

deadlocks, 226–229, 444–449
Debug, 30
debug event logs, 124
-Debug parameter, 329
debugging, 71–75
$DebugPreference, 75, 115
Debug-Process, 152, 513
Declarative Management Framework (DMF), 265
Decode-SqlName, 246, 256, 257, 258
decrement (-), 50
DEFAULT, 247, 249
Default constraint, 320
default formatter, 39, 526
default schema, 321
Delete method, 189, 209
DeleteClientAlias.ps1, 209
DeleteValue method, 194
DEMOPC, 201, 208, 210, 220, 222, 334, 379
deprecated features, 324
-desc parameter, 38
Description, 171, 186
-description <string>, 117
-detailed parameter, 31, 32
Developer edition, 378, 379
Diagnostics snap-in, 27
differential backup, 288, 308, 312
directories, managing, cmdlets for, 98–106
Disable-ComputerRestore, 513
DisableListenOnAllIPs.ps1, 213–214
Disable-PSBreakpoint, 522
disaster recovery, high availability and, 327–328
disk space usage, monitoring, 451–460
DiskSpace table, 452–454
creation of, 452
schema, 452
utilization of, 467–468

DiskUsageByServer, 454–460
creation of, 455–456
schema, 455

DisplayName, 171
Distributed COM Users group, 160
DMF (Declarative Management Framework), 265
DML statements, 323
DML triggers, 319
DMVs (dynamic management views), 404, 417
dollar symbol ($)
$?, 114
$_, 114
escape, back tick and, 148, 201, 203, 213
variables and, 45

domain guest cannot access server, 273, 475
do-until loop, 56–57
do-while loop, 56
drives, 93
list of, 94
variable, 88, 93, 111, 121

Drop method, 266
DROP_DATABASE, 236

535

DROP_LOGIN

DROP_LOGIN, 233
DROP_PROCEDURE, 237
dynamic classes, 162
dynamic management views (DMVs), 404, 417

E
editors. See also Notepad
Group Policy Object Editor, 160
Object Editor, 166
Registry Editor, 193
text, 21

ELSEIF statements, 53
Enable-ComputerRestore, 513
EnableFileStream.ps1, 215
Enable-PSBreakpoint, 522
Encode-SqlName, 246, 256, 257, 258
-encoding unicode, 63, 66
Enforce (value) , 270
Enterprise edition, 378, 379
Enter-PSSession, 508, 510
Enumkey method, 191, 192
EnumProcess(), 292
environment drives, 93, 94
environment variables, 93, 121–122
WMI and, 186–189

-eq, 35, 51
errors
nonterminating, 67
terminating, 67

$Error, 67, 68, 114
@@ERROR, 323
Error (log entry type), 128
error handling, 67–71
‘‘Error:’’ keyword, 63, 65
error log (SQL Server), 225–226,

433–439
ErrorAction, 30, 69
$ErrorActionPreference, 115
ErrorControl, 171
ERRORLOG, 225
ErrorVariable, 30, 69
event attributes, 124
Event Collector service, 124
event handling, 221–225
Event Log service, 124–125
event logs, 123–140. See also logs
administrative, 124
analytic, 124
Application, 126–127
Clear-EventLog, 136, 137, 512
cmdlets related to, 136–140
debug, 124
entry types, 128–134
Error, 128
Failure Audit, 129
Information, 128

Success Audit, 129
Warning, 128

Get-Eventlog, 129, 130, 132, 133, 134, 136,
139, 429, 430, 431, 513

Limit-EventLog, 136, 140, 515
monitoring, 429–433
operational, 124
Remove-EventLog, 137, 516
Security, 128
Show-EventLog, 136, 137, 138, 140, 513, 517
System, 128
types of, 124, 125–126
WMI and, 164–170
Write-EventLog, 136, 138, 139, 519

event queries, 221
Event Registration Tool, 162
Event Viewer, 125, 162
eventvwr, 125
EventVwr, 125, 137
except ion handling, 330–331
exclamation point (!, logical operator), 36, 50
-exclude <string[]>, 119
EXIT keyword, 508
ExitCode property, 170
Exit-PSSession, 508
Export-Alias, 522
Export-Clixml, 522
Export-Console, 508
Export-Csv, 522
Export-PSSession, 523
Express edition, 378
expressions, 49. See also operators
extended procedures, 233
extension classes, 162, 198

F
-f, 52
facet, 260
failed login attempts, 233–235
Failure Audit (log entry type) , 129
$False, 114
fil contents, managing, 106–107
fil location, database, 328
fil system drives, 93, 95–107
list of, 95
navigating, 96–98

fi es
managing, cmdlets for, 98–106
writing to, 65–66

FILESTREAM, 214–216
access level values, 215
enabling, 214, 215

fi tering, 34–38
Application log, 168, 430

Firewall, Windows, 160, 368
‘‘follow the sun’’ support model, 373

536

In
de
xGet-WmiObject -class

for loop, 55
-force parameter, 103, 252
$ForEach, 114
foreach statement, 57–58
ForEach-Object, 508
foreign keys, 320
format, log, 329
Format-Custom, 39, 523
Format-List, 27, 39, 40, 41, 42, 523
Format-Table, 39, 40, 41, 42, 198, 523
formatter, default, 39, 526
formatting, 39–42
Format-Wide, 39, 523, 527
-full parameter, 32, 33
Full-Text Filter Daemon, 199, 200
Full-Text Search feature, 379
‘‘_function_’’ , 501
function scope, 87–88
functions, 19–20, 77–81. See also specifi functions
arguments, 78–80
DDL scripts and, 500–501
Help, 34
list-ini, 20
returning values, 80–81
reuse and, 19, 77, 88, 89, 223, 224
user-def ned, naming conventions, 319

FunctionScope.ps1, 87–88

G
-ge, 35, 51
Get-Acl, 26, 520
Get-Alias, 523
GetAssemblies method, 209
Get-AuthenticodeSignature, 520
getBlockedProcessesDetails, 238
Get-ChildItem, 99, 100, 101, 121, 247, 248, 249,

252, 256, 262, 513
Get-Command, 19, 25, 245, 246, 508
Get-Command -CommandType cmdlet

service, 143
Get-Command *process* -CommandType

‘‘cmdlet’’, 153
Get-ComputerRestorePoint, 513
Get-Content, 62, 63, 89, 106, 107, 513
Get-Credential, 520
Get-Culture, 523
Get-Date, 524
Get-Event, 221, 222, 435, 515, 516, 517, 519
Get-EventLog, 513
Get-Eventlog, 129, 130, 132, 133, 134, 136, 139,

429, 430, 431, 513
Get-EventSubscriber, 221, 223, 224, 435
Get-ExecutionPolicy, 520
Get-Help, 31–38, 507, 508–509
Get-Help Get-Process, 29, 31, 32, 33
Get-History, 115, 509

Get-Host, 524
Get-Hotfix, 513
Get-Item, 249, 254, 261, 280, 513
Get-ItemProperty, 513
Get-Job, 509
Get-Location, 96, 97, 249, 513–514
Get-Member, 45, 46
def ned, 524
$Error and, 67
event class and, 167, 168
Get-Process and, 154
Get-Service and, 144, 145
Method and, 204
methods/properties and, 99, 100, 130, 249, 250,

254
SMO and, 291

Get-PfxCertificate, 520
Get-Process, 18, 153–155, 514
command chaining and, 30–31
Get-Member and, 154
output of, 153, 182
Win32_Process and, 182–183

Get-PS, 19
Get-PSBreakpoint, 19, 524
Get-PSCallStack, 19, 524
Get-PSDrive, 19, 93–94, 108, 163, 246, 514
Get-PSProvider, 19, 94–95, 514
Get-PSSession, 19, 509
Get-PSSessionConfiguration, 19
Get-PSSnapIn, 509
Get-PSSnapin, 19, 24, 509
Get-Random, 524
GetSecurityDescriptor, 173
Get-Service, 144–146, 514
Get-Member and, 144, 145
sorting and, 39

Get-SQLVersion.ps1, 286–287
GetStringValue, 193
Get-Tables.ps1, 287–288
Get-TraceSource, 524
Get-Transaction, 514
Get-UICulture, 524
Get-Unique, 524
Get-Variable, 112, 118–119, 525
Get-WMIEvent functions, 224–225, 434–435
Get-WMIEvent.ps1, 223–224
Get-WmiObject, 53, 95, 162, 163, 164, 514
Get-WmiObject -class __Namespace

-namespace root | Select-Object Name,
162

Get-WmiObject -class Win32_Environment |
Get-Member, 187

Get-WmiObject -class Win32_Environment |
Select-Object Name, VariableValue,
187

Get-WmiObject -class Win32_
NTEventlogFile | Format-Table –wrap,
164

537

Get-WmiObject -class (continued)

Get-WmiObject -class Win32_Process, 179
Get-WmiObject -class Win32_Service, 170
Get-WmiObject -computerName PowerServer3

-class Win32_Process, 183
Get-WmiObject -computerName PowerServer3

-class Win32_Service, 170
Get-WmiObject -list, 163
global DBA group, 373
global scope, 85, 87
gpedit.msc, 160
graphical user interfaces. See GUIs
Group Policy Object Editor, 160
Group-Object, 525
-gt, 35, 51
Guest Permissions policy, 277
GUIs (graphical user interfaces), command-line

interfaces v ., 1–2

H
HandleCount, 181
handling errors. See error handling
Help function, 34
-help parameter, 79, 329
high availability, disaster recovery and, 327–328
hives, 190, 191
HKEY_CLASSES_ROOT, 191
HKEY_CURRENT_CONFIG, 191
HKEY_CURRENT_USER, 191
HKEY_DYN_DATA, 191
HKEY_LOCAL_MACHINE, 191
HKEY_LOCAL_MACHINESOFTWAREMicros oftWBEM

Scripting, 163
HKEY_USERS, 191
$Home, 114
Host snap-in, 25
HostPerfmonDLL.sql f le, 414
hosts (SQL Server)
information, SMOs and, 296
performance data collection, 408–417
pinging, 420–423
SQL Server-related services and, 423–427
uptime of, 427–429

Hosts table, 335–346
CreateHosts.sql, 337–338
schema, 335–337
Upsert-Host.ps1, 341–344, 380
uspUpsertHosts.sql, 338–341

I
-ieq, 51
IF statement, 53–54
-ige, 52
-igt, 52
-ile, 52
-ilike, 52
-ilt, 52
-imatch, 52

Import-Alias, 525
Import-Clixml, 525
Import-Csv, 525
Import-LocalizedData, 525
Import-PSSession, 525
-include <string[]>, 119
increment (++), 50
indexes, naming convention for, 319
-ine, 52
infini e loop, 222, 434
Information (log entry type) , 128
infrastructure, WMI, 162
-inotlike, 52
-inotmatch, 52
inputs
parameters as, 59, 60, 61
Read-Host cmdlet, 58–59, 527
text f les as, 62–64

installation (SQL Server 2008) , 377–399
cluster installation example, 395–399
standalone installation example, 389–395
template for, 381–389

Install-AutoOptionsOff.ps1, 483–484
InstallDate, 186
Install-Instance.ps1, 383–389, 397–398
Install-MonitorBlocking.ps1, 441–443
Install-MonitorDeadlock.ps1, 446–447
Install-MonitorErrorLogsTask.ps1,

437–438
Install-MonitorWindowsEventLogs.ps1,

432–433
Install-StoredProcNamingConvention

Policy.ps1, 476–478
Integrated Scripting Environment (ISE) , 3, 11
Integration Services, 199, 200, 328, 378, 384,

386, 427
inventory database (SQL Server) , 333–376
centralized inventory server, 328, 333, 409

inventory database (SQL_Inventory) , tables
ClusterNodes table, 350–354
Clusters table, 346–350
Databases table, 368–373
Hosts table, 335–346
Servers table, 355–368
supplementary, 373–376

Invoke-Command, 509
Invoke-Expression, 526
Invoke-History, 115, 510
Invoke-Item, 514
Invoke-PolicyEvaluation, 246, 278, 280, 281
Invoke-Sqlcmd, 246, 253–255
ISE (Integrated Scripting Environment), 3, 11

J
join clauses, 323–324
Join-Path, 515

538

In
de
xMonitorErrorLog.ps1

K
KernelModeTime, 181
keywords
‘‘Error:’’, 63, 65
EXIT, 508
LIKE, 322
reserved, 320
‘‘throw,’’ 69

L
$LastExitCode, 114
-le, 35, 51
-like, 35, 51, 52
LIKE keyword, 322
Limit-EventLog, 136, 140, 515
listing 1–1 CheckPowershellPreqs

.bat, 3–5
list-ini function, 20
LoadWithPartialName, 210, 290
local scope, 86, 87
location, 96
change, with cmdlets, 96–98

LogFileUsage, 402, 407
logical operators, 50
!, 36, 50
-and, 36, 50
-not, 36, 50
-or, 36, 50

login changes, monitoring, 233
logs. See also event logs
backup, 288, 308, 311
best practices, 324
entry types, 128–134
Error, 128
Failure Audit, 129
Information, 128
Success Audit, 129
Warning, 128

format of, 329
naming convention, 329
size of, 325

loop constructs, 54–58
do-until loop, 56–57
do-while loop, 56
foreach statement, 57–58
for loop, 55
while loop, 55–56

loop, infini e, 222, 434
-lt, 35, 51
lusrmgr.msc, 160

M
-Mail parameter, 329
managed resource, 161

Management snap-in, 25–26
cmdlets related to, 512–519

ManageSQLServerService.ps 1, 201
managing
client network protocols, 203–207
f le contents, 106–107
f les/directories, 98–106
server network protocols, 211–214
SQL Server client aliases, 207–211
SQL Server services, 198–203
variables, 111, 112

-match, 51, 52
$MaximumHistoryCount, 115
MaximumWorkingSetSize, 181
Measure-Command, 526
Measure-Object, 526
MemoryPerHost setting, 165, 166
methods. See also specifi methods
Get-Member and, 99, 100, 130, 249, 250, 254

Microsoft Best Practices: Maintenance, 270
Microsoft Clustering Service. See MSCS
Microsoft Management Console (MMC) , 125, 197
Microsoft.PowerShell.core, 24–25
Microsoft.PowerShell.Diagnos tics, 27
Microsoft.PowerShell.hos t, 25
Microsoft.PowerShell.Management , 25–26
Microsoft.PowerShell.Securit y, 26
Microsoft.PowerShell.Utility, 27
Microsoft.SqlServer.Management.Dmf, 265,

475
Microsoft.SqlServer.Management.Smo

.relocatefile, 313, 314
Microsoft.SqlServer.Management.Smo

.Scripter class, 303, 487, 488
Microsoft.SqlServer.Management.Smo

.Server class, 251, 290, 298, 303, 487, 488,
490, 492, 497, 499, 502, 504

Microsoft.SqlServer.Management.Smo
.StoredProcedure, 488, 499

Microsoft.SqlServer.Smo.dll assembly, 209, 290
Microsoft.SqlServer.SqlWmiManagement .dll assembly,

209, 210
Microsoft.WsMan.Management, 28
MinimumWorkingSetSize, 181
MMC (Microsoft Management Console), 125, 197
models
Common Information Model Object Manager, 161,

162
Common Information Model repository, 161, 162,

220
WMI model, 161–164

Monitor-Backups.ps1, 470–471
Monitor-Blocking.ps1, 440–441
MonitorBlockings.ps1, 230
MonitorDatabases.ps1, 236
Monitor-Deadlock.ps1, 445–446
MonitorDeadlocks.ps1, 226, 227
MonitorErrorLog.ps1, 225–226

539

MonitorFailedLoginAttempts.ps1

MonitorFailedLoginAttempts.ps1, 234
monitoring (SQL Server) , 419–450, 451–473
backups, 468–472
blockings, 229–232, 439–444
database f le growth, 461–468
database objects, 236–239
databases, 235–236
deadlocks, 226–229, 444–449
disk space usage, 451–460
event logs, 429–433
failed login attempts, 233–235
hosts
pinging, 420–423
SQL Server-related services and, 423–427
uptime of, 427–429

login changes, 233–235
SQL Server error log, 225–226, 433–439

MonitorLogins.ps1, 233
Monitor-SQLServerErrorLog.ps1, 436
MonitorStoredProcs.ps1, 237, 238
Monitor_WindowsEventLogs, 438
Monitor-WindowsEventLogs.ps1, 430–432
more, 33
Move-Item, 99, 105, 515
Move-ItemProperty, 515
MoveNext (), 114
MSCS (Microsoft Clustering Service) , 346, 348,

350, 380
msdb.dbo.backupset table, 468, 469, 480
MS-DOS, 2, 3, 33
MSSQLSERVER, 171, 172, 176
multiline comments, 21
multi-table.ps1, 61–62
Murphy’s law, 327
MyDB2, 298–299
MyDBTest, 299–304
compatiblity level, 302–303
differential backup, 312
execute stored procedure/query, 301
scripting of, 303
set_RecoveryModel method and, 300, 302
transaction log backup, 311

MyDBTest2, 313, 314
MyError, 69
myfunction, 86
mymodule.ps1, 84- 85, 89
$mynumvar, 45
Myscope.ps1, 86
$mystrvar, 45
$myvar, 45, 86, 120

N
-name parameter, 119, 154
Name property, 170, 186
named parameters, 28–29

Named Pipes protocol, 192, 193, 204, 205,
206, 211

naming conventions
Check constraint, 320
columns, 319
databases, 318
Default constraint, 320
foreign keys, 320
general rules, 320
indexes, 319
log f les, 329
primary keys, 320
roles, 320
script, 329
SQL Server standards, 318–320
stored procedures, 318–319, 475
tables, 318
triggers, 319
user-def ned data types, 319–320
user-def ned functions, 319
variables, 320, 330
views, 318

native commands, 16–18
-ne, 35, 51
.NET classes, 6, 209, 221, 265, 283, 521, 526
.NET Framework
download, 6
install, 6
SQL Server 2008 install and, 242

.NET-based object library, 487, 506. See also SMOs
network protocols
client, 203–207
server, 211–214

New-Alias, 526
newest parameter, 132
New-EventLog, 137, 138
New-Item, 99, 101, 102, 116, 117, 118, 515
New-Object, 526
New-PSDrive, 515
New-PSSession, 510
New-Service, 515
New-TimeSpan, 526
New-Variable, 112, 116, 117–118, 526
New-Item v ., 117–118
syntax, 117

New-WebServiceProxy, 515
‘‘no server access’’ condition, 265, 267, 273, 275,

475
NODE1, 334
NODE2, 334
nonterminating errors, 67
non-uniformmemory access (NUMA) nodes, 213
-not, 36, 50
-notcontains, 35
Notepad
add-num.ps1 and, 20, 21, 22
calculate-arith.ps1 and, 59–60
C:MyPsT ranscripts.tx t f le and, 90, 91

540

In
de
xpermissions

Notepad (continued)
native command, 16
read-errorlog.ps1 and, 63–64
sqlevents.tx t f le and, 136, 137
terminate, 185

Notify-WMIEvent function, 435, 439, 440
-notlike, 35, 51
-notmatch, 51
noun format, verb-, 18, 28, 329
NsService, 200
NTFS fil system, 214
NUMA (non-uniformmemory access) nodes, 213
numeric assignment operators, 50
%=, 50
*=, 50
+ =, 50
− =, 50
/=, 50
=, 50
variables and, 45, 47

O
Object Browser, 162
Object Editor, 166
object owner, DBO as, 321
object-oriented cmdlets, 44
object-oriented design principles, 162
operational event logs, 124
operators, 45, 50–52
comparison, 51–52
logical, 50
numeric assignment, 50
string, 52
unary, 50

-option <ScopedItemOptions>, 117
-or, 36, 50
OSName, 180
OtherOperationCount, 182
OtherTransferCount, 182
Out-Default, 39, 526
Out-File, 136, 526
Out-GridView, 527
Out-Host, 527
Out-Null, 527
Out-Printer, 527
output, 64–67
writing to console, 64–65
writing to f le, 65–67

OutputBuffer, 30
OutputVariable, 30
Out-String, 527

P
PageFaults, 181
PageFileUsage, 181

parameters, 59, 60, 61. See also specifi parameters
AccessLevel, 214, 215
-computerName, 163, 164, 175, 201, 208
Debug, 30
-Debug, 329
default, scripts and, 329
-desc, 38
-detailed, 31, 32
ErrorAction, 30
ErrorVariable, 30
-force, 103, 252
-full, 32, 33
-help, 79, 329
information on, 30
-Mail, 329
-name, 119, 154
named, 28–29
newest, 132
OutputBuffer, 30
OutputVariable, 30
-Path, 102, 121
positional, 29–30
-recurse, 103, 104
script, 81–84
switches v ., 79. See also switch parameters
-Type, 101
Verbose, 30
WhatIf, 30
wildcards and, 29

parent directory (..) , 97
ParentProcessId, 180
-passThru <SwitchParameter>, 117
-Path parameter, 102, 121
PATH variable, 12
PathName, 171
PBM. See Policy-Based Management
PeakPageFileUsage, 181
PeakVirtualSize, 181
PeakWorkingSetSize, 181
PerfDisk_PhysicalDisk, 409, 414
PerfMon_DB, 409, 414, 415, 416
performance
bottlenecks, 401, 409
database design and, 326
guidelines, 326–327

performance counters, 27, 153, 182, 297
performance data collection
host-related, 408–417
SQL Server-related, 401–408

Perform-PostSetupTasks.ps1, 392–395
PerfRawData_PerfOS_Memory, 409, 414
PerfRawData_PerfOS_Processor, 409, 415
PerfRawData_PerfProc_Process, 409, 415
PerfRawData_Tcpip_NetworkInterface, 409,

415
permissions
ACLs and, 520
Guest Permissions policy, 277

541

permissions (continued)

permissions (continued)
special, 325
WMI and, 159–161

$PID, 114
Ping-Host function, 421–422
Ping-Hosts.ps1, 422
pinging SQL Server hosts, 420–423
pipe (|), 25
pipelines, 30, 65. See also command chaining
plus (+)
concatenation, 47, 49, 52
unary operator, 50

policies, 268–281, 475–486. See also
SQLSERVER:SQLPolicy folder

‘‘Auto_Close and Auto_Shrink Off,’’ 480–485
‘‘Database Auto Options Disabled,’’ 481–485
manual evaluation, 278–279
‘‘Stored Procedure Naming Convention,’’ 475–480

Policy class, 268, 273, 277, 278
Policy-Based Management (PBM), 259–262,

475, 485
conditions and, 260, 263–268
online information, 260
policies and. See policies
terms in, 259

Pop-Location, 96, 98, 515
positional parameters, 29–30
positive (+), 50
pound symbol (#) , 21, 60
POWERPC, 334
POWERSERVER3, 334
PowerShell
1.0
SQL Server 2008 install and, 242
uninstalling, 7

2.0 CTP3, 3, 7, 10
coding, standards/best practices, 329–331
installing, 7–10
prerequisites, 2–7
standard for, 329

ISE, 3, 11
launching, 10–13
All Programs, 11
command console, 11
on SQL Server, 242–244
SSMS and, 243
StartRun, 11–13

Management snap-in, 25–26
cmdlets related to, 512–519

prompt and, 329
purpose of, 1, 2
RTM, 3, 10, 151
SDK, 18
SQL Server and, 241–258. See also SQL Server
SQLConnection class and, 283–290, 309
version, choosing , 329
window, title and, 329

powershell, 11

preference variables, 115–116
primary keys, 320
Priority, 180
PrivatePageCount, 181
processes, 151–157
change priority of, 155
cmdlets related to, 151–157, 513–514, 517–519,

522
Debug-Process, 152, 513
Get-Process, 18, 153–155
command chaining and, 30–31
Get-Member and, 154

Start-Process, 152, 517, 518
Stop-Process, 155–157, 522
Wait-Process, 152, 519
WMI and, 179–186

ProcessId, 171, 180
production standards (SQL Server) , 327–328
$Profile, 115
$profile, 89, 115
Profile (SQL Server) , 378
profile , 20, 88–90
%UserProf le%\Documents\ WindowsPowerShell\

Microsoft.P owerShell_prof le.ps1, 89, 115, 224
%UserProf le%\Documents\ WindowsPowerShell\

prof le.ps1, 88
%UserProf le%\My

Documents\ WindowsPowerShellMicrosoft
.PowerShell_prof le.ps1, 89, 115, 224

%UserProf le%\My Documents\ WindowsPowerShell\
prof le.ps1, 88

%windir%\system32\ WindowsPowerShell\ v2.0\
Microsoft.PowerShell_ prof le.ps1, 88

%windir%\system32\ WindowsPowerShell\ v2.0\
prof le.ps1, 88

programming languages, basic requirements for, 44
prompt, PowerShell, 329
properties. See also specifi properties
Get-Member and, 99, 100, 130, 249, 250, 254

providers (WMI) , 161, 162. See also WMI Provider for
Configura ion Management; WMI Provider for
Server Events

.ps1 files 20, 44. See also scripts
$PSHome, 115
Push-Location, 96, 98, 516
$pwd, 115

Q
queries
data, 221
event, 221
schema, 221
SELECT* and, 322

Query Optimizer, 325
‘‘quota violation,’’ 165
QuotaNonPagedPoolUsage, 182

542

In
de
xscripts

QuotaPagedPoolUsage, 182
QuotaPeakNonPagedPoolUsage, 182
QuotaPeakPagedPoolUsage, 182

R
RAID configura ion, 328
read-errorlog2.ps1, 65–66
read-errorlog.ps1, 63–64
read-file.ps1, 62
Read-Host, 58–59, 527
ReadOperationCount, 182
ReadTransferCount, 182
Receive-Job, 510
recovery, high availability and, 327–328
-recurse parameter, 103, 104
RegionHolidays table, 374, 376
Regions table, 374, 375
RegionSupportShifts table, 374, 375
Register-WmiEvent, 221, 222, 435
registry drives, 93, 108–111
Registry Editor, 193
registry, WMI and, 190–195
release to manufacturing (RTM) , 3, 10, 151
Remove-Computer, 516
Remove-Event, 221, 223, 224, 435, 516
Remove-EventLog, 137, 516
Remove-Item, 99, 104, 516
Remove-ItemProperty, 516
Remove-Job, 510
Remove-PSBreakpoint, 527
Remove-PSDrive, 516
Remove-PSSession, 510
Remove-PSSnapIn, 510
Remove-Variable, 112, 119–120, 527
Rename-Computer, 516
Rename-Item, 99, 105, 106, 516
Rename-ItemProperty, 516
-replace, 52
-replace, 47, 52
Replication feature, 379
Reporting Services, 199, 200, 378, 427
reserved keyword, 320
Reset-ComputerMachinePassword, 516
Resolve-Path, 516
Restart-Computer, 516
Restart-Service, 517
restore, 313–316
full backup, 313
transaction log backup and full backup, 313–316

Restore-Computer, 517
Resume-Service, 517
returning values, 80–81
reuse
functions and, 19, 77, 88, 89, 223, 224. See also

functions
scripts and, 42, 77, 440. See also scripts

roles, 320
best practices, 325
security and, 325

rootCIMV2 namespace, 162, 163, 165, 170, 190
rovar, 117, 118, 119, 120
RTM (release to manufacturing), 3, 10, 151

S
schema(s)
ClusterNodes table, 351
Clusters table, 346
data protection and, 327
Databases table, 373
DatabaseSpace table, 461
dbo, 321
DDL scripts and, 489–491
default, 321
DiskSpace table, 452
DiskUsageByServer, 455
Hosts table, 335–337
queries, 221
RegionHolidays table, 374, 376
Regions table, 374, 375
RegionSupportShifts table, 374, 375
ServerBUContacts table, 374, 375
Servers table, 355–356
tables and, 318
views and, 318
XML, DDL and, 502–503

-scope <string>, 117
scopes
child, 86, 87, 99, 117, 511
function, 87–88
global, 85, 87
local, 86, 87
script, 86, 87
variable, 85–87

scratch database, 328
‘‘script cannot be loaded because execut ion of script

is disabled’’, 21
script commands, 20–22
script parameters, 81–84
script scope, 86, 87
ScriptAlter method, 267
ScriptCreate method, 267
Script-Db.ps1, 488–489
ScriptDrop method, 267
Scripter class, 303, 487, 488
Script-Function.ps1, 500–501
Scripting Library, WMI, 161, 162
scripts, 43, 44, 59
add-num.ps1, 20, 21, 22
Backup-DataBase.ps1, 289, 290
basic requirements for, 44
calculate-arith2.ps1, 60–61, 72
calculate-arith3.ps1, 69–70

543

scripts (continued)

scripts (continued)
calculate-arith4.ps1, 73–74
calculate-arith.ps1, 59–60, 80–81
ChangeDefaultPortNumber.ps1, 212–213
ChangeStartupParameters.ps1, 216–217
Check-Services.ps1, 424–425
Check-SqlServices.ps1, 426–427
ClusterNodes table creation and, 350–351
Collect-HostPerfmon.ps1, 414–416
Collect-SQLPerfmonData.ps1, 406–407
command shell and, 22–23
CreateDatabases.ps1, 368–369
CreatePolicy.ps1, 273–275
CreateServerAlias2008.ps1, 211
Create-Servers.ps1, 356
DDL, 487–506
databases, 487–489
functions, 500–501
schemas, 489–491
stored procedures, 498–500
tables, 494–496
user views, 496–498
user-def ned data types, 491–494
users, 503–506
XML schemas, 502–503

default parameters, 329
DeleteClientAlias.ps1, 209
DisableListenOnAllIPs.ps1, 213–214
EnableFileStream.ps1, 215
FunctionScope.ps1, 87–88
Get-SQLVersion.ps1, 286–287
Get-Tables.ps1, 287–288
Get-WMIEvent.ps1, 223–224
Install-AutoOptionsOff.ps1, 483–484
Install-Instance.ps1, 383–389, 397–398
Install-MonitorBlocking.ps1, 441–443
Install-MonitorDeadlock.ps1, 446–447
Install-MonitorErrorLogsTask.ps1,

437–438
Install-MonitorWindowsEventLogs.ps1,

432–433
Install-StoredProcNamingConvention

Policy.ps1, 476–478
Monitor-Backups.ps1, 470–471
Monitor-Blocking.ps1, 440–441
MonitorBlockings.ps1, 230
Monitor-Deadlock.ps1, 445–446
MonitorDeadlocks.ps1, 226, 227
MonitorErrorLog.ps1, 225–226
MonitorFailedLoginAttempts.ps1, 234
MonitorLogins.ps1, 233
Monitor-SQLServerErrorLog.ps1, 436
Monitor-WindowsEventLogs.ps1, 430–432
multi-table.ps1, 61–62
mymodule.ps1, 84–85, 89
Myscope.ps1, 86
naming convention, 329
Perform-PostSetupTasks.ps1, 392–395

Ping-Hosts.ps1, 422
read-errorlog2.ps1, 65–66
read-errorlog.ps1, 63–64
read-file.ps1, 62
reuse and, 42, 77, 440
Script-Db.ps1, 488–489
Script-Function.ps1, 500–501
Script-Schema.ps1, 490–491
Script-SP.ps1, 498–499
Script-Table.ps1, 494–496
Script-UDDtype.ps1, 491–492
Script-UDtype.ps1, 492–493
Script-User.ps1, 503–504
Script-View.ps1, 497
Script-XMLSchema.ps1, 502
Test-Args1.ps1, 81
Test-Args2.ps1, 82
Test-Args3.ps1, 83–84
test-trap.ps1, 70–71
Update-DiskSpace.ps1, 456–459
Update-SQLServerHosts.ps1, 428
Upsert-ClusterNode.ps1, 353–354
Upsert-Cluster.ps1, 348–350
Upsert-Database.ps1, 370–373
Upsert-Host.ps1, 341–344, 380
Upsert-Server.ps1, 361–368

Script-Schema.ps1, 490–491
Script-SP.ps1, 498–499
Script-Table.ps1, 494–496
Script-UDDtype.ps1, 491–492
Script-UDtype.ps1, 492–493
Script-User.ps1, 503–504
Script-View.ps1, 497
Script-XMLSchema.ps1, 502
SDK (Software Development Kit), 18
security
best practices, 325
DCOM, 160
roles and, 325

Security event log, 128
Security snap-in, 26
cmdlets related to, 519–520

segregation, 328
SELECT*, 322
Select-Object, 34, 37, 95, 100, 165, 166, 168,

172, 187, 198, 203, 204, 206, 263, 528
Select-String, 528
Send-Email function, 420–421
Send-MailMessage, 528
Serialize method, 270, 271, 272
server components (SQL Server) , 378
Server Events. See WMI Provider for Server Events
server events classes, 220
Server Management Objects. See SMOs
server network protocols, 211–214
ServerBUContacts table, 374, 375
ServerNetworkProtocolProperty class, 211,

212, 213, 393, 394

544

In
de
xSQL Server

Servers table, 355–368
Create-Servers.ps1, 356
schema, 355–356
Upsert-Server.ps1, 361–368
uspUpsertServers stored procedure, 357–361

Service Broker, 220, 259
services (SQL Server) , 198–203
start modes, 203
states, 200
types, 199, 200

services (Windows), 141–151
cmdlets related to, 143–151
WMI and, 170–179

SET NOCOUNT ON, 323, 404, 415, 463
Set-Acl, 520
Set-Alias, 528
Set-AuthenticodeSignature, 520
Set-Content, 65, 66, 89, 106, 107, 517
Set-Date, 528
Set-ExecutionPolicy, 22, 26, 520
Set-Item, 121, 517
Set-ItemProperty, 517
Set-Location, 21, 22, 96, 97, 517
SetPriority, 183–185
Set-PSBreakpoint, 528–529
Set-PSDebug, 71, 72, 73, 74, 75, 511
set_RecoveryModel method, 300, 302
SetSecurityDescriptor, 173
Set-Service, 150–151, 517
SetStartMode, 202, 203
Set-StrictMode, 511
SetStringValue method, 194
Set-TraceSource, 529
Set-Variable, 112, 119, 529
SetX.exe, 122
shell functions. See functions
Show-EventLog, 136, 137, 138, 140, 513, 517
SilentlyContinue, 75, 115, 116
size, database/log f le, 325
SMO.Backup class, 309
SMO.BackupDeviceitem class, 309
SMOs (Server Management Objects), 209, 290–316
backup with, 308–313
class library, 290
databases and, 297–304
DDL scripts and, 487. See also DDL scripts
restore with, 313–316
SQL Server and, 290–297
change login mode, 296
database-related information, 295
host information, 296
performance counters, 297
properties/methods, 291
server-related information, 293–294
SPID information, 292
version information, 291–292

tables and, 304–308
‘‘TestDatabase’’ and, 251–252

snap-ins, 23–28, 241
adding, dbaLib.ps1 and, 260–261
Core, 24–25
cmdlets related to, 507–511

Diagnostics, 27
Host, 25
Management, 25–26
cmdlets related to, 512–519

Security, 26
cmdlets related to, 519–520

SQL Server, 241, 242
Utility, 27
cmdlets related to, 520–530

WsMan.Manag ement, 28
Software Development Kit (SDK) , 18
sorting, 38–39
Sort-Object, 30, 31, 38–39, 529
-Source option, 138
sourcing, 84–85
sp_configure, 229, 260, 294
Split-Path, 517
sp_trace_setevent, 233
sp_trace_setstatus, 233
SQL (child item), 247
SQL Server
2008. See also installation
editions, 378
installation, 377–399

advanced properties, changing, 216–218
Agent service, 148, 173, 176, 177, 178, 199, 200,

203, 383, 384, 386, 391, 397
Analysis Services, 199, 200, 378
authentication, 254, 255
Browser service, 199, 200, 216, 479
Business Intelligence Development Studio, 378
client aliases, 207–211
client tools, 379
Conf guration Manager, 185, 197, 218, 378. See also

WMI Provider for Conf guration Management
Connectiv ity Components, 378
Database Engine Tuning Advisor, 378
date/datetime data types, 323
development standards, 318–320
error log, monitoring, 225–226, 433–439
hosts
information, SMOs and, 296
performance data collection, 408–417

installation, 377–399
cluster installation example, 395–399
standalone installation example, 389–395
template for, 381–389

Integration Services, 199, 200, 328, 378, 384,
386, 427

inventory database. See inventory database
launching PowerShell on, 242–245
monitoring, 419–450, 451–473
blockings, 229–232, 439–444
database objects, 236–239

545

SQL Server (continued)

SQL Server (continued)
databases, 235–236
deadlocks, 226–229, 444–449
error log, 225–226, 433–439
event logs, 429–433
failed login attempts, 233–235
login changes, 233–235

performance data collection, 401–408
PowerShell and, 241–258
PowerShell provider, 242
restrictions of, 250

production standards, 327–328
Prof ler, 378
Reporting Services, 199, 200, 378, 427
segregation and, 328
server components, 378
SMOs and, 290–297
change login mode, 296
database-related information, 295
host information, 296
performance counters, 297
properties/methods, 291
server-related information, 293–294
SPID information, 292
version information, 291–292

snap-ins, 241, 242
standards, 318
traces, 233

SQL Server Management Studio (SSMS)
launching PowerShell through, 243
query window, 216, 226, 230, 231, 233, 236, 237,

443, 444, 447, 448
SQL Server-related services, hosts and, 423–427
SQL2008CLUSTER, 334, 350, 354, 380, 395, 397,

398
SQLCommand class, 284
SQLConnection class, 283–290, 309
SQLDataAdapter class, 284
sqlevents.tx t f le, 136, 137
sqlevents.xml f le, 135
SQL_Inventory. See inventory database
SQLPerfmonDDL.sql file 406
sqlps utility, 241–245
SQLRegistration, 247, 248
SQLRestore(), 313, 314
SQLSERVER: drive, 241, 245, 246, 256, 258, 259,

260, 261, 283
child items, 247

SQLSERVERAGENT, 173, 174, 175, 176, 177, 203
SqlServerAlias class, 208, 209, 211
SqlServerCmdletSnapin100, 245, 246
SqlServerProviderSnapin100, 245, 246
SQLSERVER:SQLPolicy folder, 247, 259–262
SqlService class, 198, 212, 216, 427
SqlServiceAdvancedProperty class, 216, 217,

218
SQLservr.exe, 172, 179, 180, 182, 184
SSMS. See SQL Server Management Studio

standalone installation example (SQL Server 2008) ,
389–395

Perform-PostSetupTasks.ps1, 392–395
template f le for, 389–391

StandaloneTemplate.txt, 389–391
Standard edition, 378, 379
standards, 317–331
best practices and, 317
data protection, 327
database design, 324–327
PowerShell coding, 329–331
SQL Server, 318
development, 318–320
production, 327–328

stored procedure, 321–324
Start Run, PowerShell and, 11–13
Started, 171
Start-Job, 511
StartMode property, 171
StartName, 172
Start-Process, 152, 517, 518
StartService, 173, 174
Start-Service, 148–149, 518
Start-Sleep, 529
Start-Transaction, 518
Start-Transcript, 25, 90, 91
static classes, 162
Status property, 171
StdRegProv, 190, 191, 192, 193
Step, 71, 511
Stop-Computer, 518
Stop-Job, 511
Stop-Process, 155–157, 518, 522
StopService, 173
Stop-Service, 146–148, 518
Stop-Transcript, 25, 90, 91
‘‘_stored procedure_’’ , 499
‘‘Stored Procedure Naming Convention’’ policy,

475–480
stored procedures
comments and, 321–322
cursors and, 322
dba_MonitorBackups, 479, 480
DDL scripts and, 498–500
naming conventions for, 318–319, 475
SELECT* and, 322
small, 321
standards, 321–324
temporary tables and, 322
‘‘usp’’ and, 318, 475
uspMonitorBackups, 468–469
uspUpsertClusterNodes, 351, 353
uspUpsertClusters, 347
uspUpsertDatabases, 369
uspUpsertDatabaseSpace, 462
uspUpsertDiskspace, 453
uspUpsertHosts, 338

string operators, 52

546

In
de
x-Type parameter

Success Audit (log entry type) , 129
supplementary tables (inventory database), 373–376
Suspend-Service, 518
svchost.exe, 125
switch parameters, 83
-confirm, 30, 137, 147, 148, 149, 156, 157
-unique, 165, 166, 168
-WhatIf, 116, 146, 157

switch statement, 53
switches
arguments as, 79
parameters v ., 79

syntax
cmdlet, 28–31
New-Variable, 117

sys.dm_exec_query_stats, 404
sys.dm_exec_sql_text, 404
sys.dm_os_memory_clerks, 404
sys.dm_os_performance_counters, 404
sys.dm_os_schedulers, 404
System event log, 128
SystemName, 172
SystemVariable, 186

T
‘‘_table_’’ , 496
tables
AWBuildVersion, 243
AWEAllocated, 402, 407
ClusterNodes table, 350–354
Clusters table, 346–350
columns
adding, 307–308
listing, 305–306
removing, 306–307

creating, 305
Databases table, 368–373
DatabaseSpace, 461–468
DDL scripts and, 494–496
DiskSpace, 425–454, 467–468
dropping, 308
Hosts table, 335–346
LogFileUsage, 402, 407
msdb.dbo.backupset, 468, 469, 480
naming convention for, 318
RegionHolidays, 374, 376
Regions, 374, 375
RegionSupportShifts, 374, 375
schema and, 318
ServerBUContacts, 374, 375
Servers table, 355–368
SMOs and, 304–308
supplementary (inventory database), 373–376
TaskCount, 402, 407
temporary, 322
Test, 227, 231, 232, 330, 444, 448, 449

Test2, 227, 448, 449
TopMemConsumption, 402, 407
TopQueries, 402, 407
user-def ned, 324

target sets, 259, 260
targets, 259
Task Scheduler 2.0, 124
TaskCount, 402, 407
taskmgr, 151
TaskMgr, 151
TCP/IP ports, 368, 441, 476, 481
#1433, 193, 206, 212
#3660, 212, 213
#7001, 206, 207, 208, 210, 395, 399

TCP/IP protocol, 192, 204, 205, 206, 210, 212,
367, 368, 385

Tee-Object, 529
tempdb
backup and, 327
split, 325
temporary tables and, 322

template (SQL Server installation), 381–389
Install-Instance.ps1, 383–389

temporary tables, 322
Terminate, 183, 185–186
terminating errors, 67
Test table, 227, 231, 232, 330, 444, 448, 449
Test2 table, 227, 448, 449
Test-Args1.ps1, 81
Test-Args2.ps1, 82
Test-Args3.ps1, 83–84
Test-Connection, 519
‘‘TestDatabase’’, 251–252
Test-Path, 519
test-trap.ps1, 70–71
text editors, 21. See also Notepad
text file , 62–64
TextData property, 227, 228–229, 231
ThreadCount, 181
‘‘throw’’ keyword, 69
TopMemConsumption, 402, 407
TopQueries, 402, 407
ToUpper method, 46
Trace, 71, 72, 73, 511
Trace-Command, 529
traces, 233
transaction log backup, 288, 308, 311
transcripts, 90–91
Transfer object, 505
TRAP, 70–71
triggers, 319
$True, 115
TRY block, 323
T-SQL command (example) , 286–287
-Type parameter, 101

547

‘‘_udtype_’’

U
‘‘_udtype_’’ , 494
unary operators, 50
Undo-Transaction, 519
Uniform Resource Name (URN) , 256–258
-unique switch parameter, 165, 166, 168
Unregister-Event, 221, 223, 224, 435
Update-DiskSpace.ps1, 456–459
Update-FormatData, 529
Update-List, 529
Update-SQLServerHosts.ps1, 428
Update-TypeData, 529–530
Upsert-ClusterNode.ps1, 353–354
Upsert-Cluster.ps1, 348–350
Upsert-Database.ps1, 370–373
Upsert-Host.ps1, 341–344, 380
Upsert-Server.ps1, 361–368
URN (Uniform Resource Name), 256–258
‘‘_user_’’ , 504
user profile . See profile
user views, DDL scripts and, 496–498
user-created variables, 116–120
user-define data types, 319–320
DDL scripts and, 491–494

user-define functions, 319
user-define tables, 324
UserModeTime, 181
UserName, 186
%UserProfile% Documents\WindowsPowerShell\

Microsoft.PowerShell_profile.p 1, 89, 115, 224
%UserProfile% Documents\WindowsPowerShell\

profile.p 1, 88
%UserProfile% My Documents\WindowsPowerShell\

Microsoft.PowerShell_profile.p 1, 89, 115, 224
%UserProfile% My

Documents\WindowsPowerShell\profile.p 1, 88
users, DDL scripts and, 503–506
Use-Transaction, 519
‘‘usp,’’ 318, 475. See also stored procedures
uspBackupDB, 288–289
uspMonitorBackups stored procedure, 468–469
uspUpsertClusterNodes stored procedure, 351,

353
uspUpsertClusterNodes.sql, 351–353
uspUpsertClusters stored procedure, 347
uspUpsertClusters.sql, 347–348
uspUpsertDatabases stored procedure, 369
uspUpsertDatabaseSpace stored procedure, 462
uspUpsertDatabaseSpace.sql, 462–463
uspUpsertDatabases.sql, 369–370
uspUpsertDiskspace stored procedure, 453
uspUpsertDiskspace.sql, 453–454
uspUpsertHosts stored procedure, 338
uspUpsertHosts.sql, 338–341
uspUpsertServers stored procedure, 357–361
Utility snap-in, 27
cmdlets related to, 520–530

V
-valueOnly <SwitchParameter>, 119
values, returning, 80–81
varbinary (max) , 214, 326
variable drives, 88, 93, 111, 121
variable scope, 85–87
variables, 44–47. See also specifi variables
automatic, 113–115
date values and, 47
dollar symbol and, 45
environment, 93, 121–122
WMI and, 186–189

equals operator and, 45, 47
managing, with cmdlets, 111, 112
naming convention for, 320, 330
preference, 115–116
user-created, 116–120

VariableValue, 186
VBScripts, 2, 18, 162
VCS (Veritas Cluster Server) , 348
verb-noun format, 18, 28, 329
Verbose, 30
Veritas Cluster Server (VCS), 348
versions
PowerShell, 329
SQL Server, SMOs and, 291–292

‘‘_view_’’ , 498
views
DMVs, 404, 417
naming convention for, 318
schema and, 318

VirtualSize, 182

W
Wait-Job, 511
Wait-Process, 152, 519
Warning (log entry type) , 128
$WarningPreference, 116
wbemtest.exe, 165
Web edition, 378
wevutil, 124
WhatIf, 30
-WhatIf switch parameter, 116, 146
$WhatIfPreference, 116
Where-Object, 25, 30, 31, 34, 35, 100, 119,

132, 511
while loop, 55–56
wildcards
*, 100
?, 101
[,], 101
parameter values and, 29

Win32_Environment, 186, 187, 189
Win32_LogicalDisk, 95, 162, 163, 453, 457
Win32_NTEventlogFile, 163, 164
Win32_NTLogEvent, 163, 165, 166, 167, 168, 169

548

In
de
xXML schemas, DDL scripts and

Win32_PerfRawData_PerfDisk_
PhysicalDisk, 414

Win32_PerfRawData_PerfOS_Memory, 414
Win32_PerfRawData_PerfOS_Processor, 414
Win32_PerfRawData_PerfProc_Process, 414
Win32_PerfRawData_Tcpip_

NetworkInterface, 414
Win32_Process, 163, 179–186
CPU-related properties, 181
Get-Process and, 182–183
I/O related properties, 182
memory-related properties, 181–182
SetPriority and, 183–185
static properties, 179–180
Terminate and, 183, 185–186

Win32_Service, 163, 170–179
methods, 173
properties, 170–172

%windir%\system32\WindowsPowerShell\v2.0\
Microsoft.PowerShell_profile.p 1, 88

%windir%\system32\WindowsPowerShell\v2.0\
profile.p 1, 88

Windows calculator, 17
Windows event logs. See event logs
Windows Firewall, 160, 368
Windows Management Instrumentation. See WMI
Windows PowerShell. See PowerShell
Windows processes. See processes
Windows Remote Management (WinRM), 6–7
Windows services. See services
WindowsVersion, 180
WinRM (Windows Remote Management), 6–7
WMI (Windows Management Instrumentation), 95,

159–195
CIM Studio, 162
classes. See classes
consumer, 162
DCOM security and, 160
environment variables and, 186–189
event logs and, 164–170
Event Registration Tool, 162
Event Viewer, 125, 162
importance of, 159
infrastructure, 162
managed resource, 161
model, 161–164
Object Browser, 162
permission issues and, 159–161
processes and, 179–186
providers, 161, 162

registry and, 190–195
Scripting Library, 161, 162
services and, 170–179
Windows Firewall settings and, 160

WMI Provider for Configura ion Management,
197–218

client network protocols and, 203–207
FILESTREAM settings and, 214–216
server network protocols and, 211–214
SQL Server advanced properties and, 216–218
SQL Server client aliases and, 207–211
SQL Server services and, 198–203

WMI Provider for Server Events, 197, 219–240
blockings and, 229–232
database monitoring and, 235–236
database object monitoring and, 236–239
deadlocks and, 226–229
event handling and, 221–225
failed login attempts and, 233–235
login changes and, 233
online information, 239
overview, 219–220
SQL Server error log and, 225–226
WQL and, 220–221

WMI Query Language. See WQL
WMI Windows Installer Provider, 5
Workgroup edition, 378
WorkingSetSize, 181
WQL (WMI Query Language), 220–221
Write-Debug, 73–74, 75, 530
Write-Error, 530
Write-EventLog, 519
Write-Host, 28, 59, 60, 61, 62, 64, 65, 473, 530
WriteOperationCount, 182
Write-Output, 64, 65, 473, 530
Write-Progress, 530
WriteTransferCount, 182
Write-Verbose, 530
Write-Warning, 530
writing
to console, 64–65
to f le, 65–67

Ws-Management, 6–7
WsMan.Management snap-in, 28

X
‘‘_xml_’’ , 503
XML schemas, DDL scripts and, 502–503

549

	Microsoft SQL Server 2008 Administration with Windows PowerShell
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata

	Chapter 1: What Is Windows PowerShell?
	Command-Line Interfaces versus Graphical User Interfaces
	Prerequisites for Installing Windows PowerShell 2.0
	Installing Windows PowerShell
	Launching Windows PowerShell
	Summary

	Chapter 2: Windows PowerShell Command Types, Snap-ins, and cmdlets
	PowerShell Command Types
	PowerShell Snap-ins
	PowerShell cmdlet Syntax
	Getting Help
	Sorting
	Formatting
	Summary

	Chapter 3: Windows PowerShell Programming, Scripting, Error Handling, and Debugging
	PowerShell Scripts
	PowerShell Variables
	Arrays
	Expressions
	Conditional Expressions
	Loop Construct
	Input
	PowerShell Scripting
	Text File As Input
	Output
	Error Handling
	Debugging
	Summary

	Chapter 4: Windows PowerShell Functions, Parameters, Sourcing, Scopes, and User Profiles
	Functions
	Script Parameters
	Sourcing
	Variable Scope
	Transcripts
	Summary

	Chapter 5: Working with the File System, Registry, and Variables
	Using Get-PSDrive and Get-PSProvider
	Working with File System
	Working with the Registry
	Working with Variables
	Working with Environment Variables
	Summary

	Chapter 6: Working with Event Logs
	Event Log Service
	Event Viewer
	Event Logs
	Log Entry Types
	Exporting the event logs
	Summary

	Chapter 7: Working with Windows Services and Processes
	What Is a Windows Service?
	Windows PowerShell and Windows Services
	Working with Windows Processes
	Get-Process
	Stop-Process
	Summary

	Chapter 8: Working with WMI
	Permission Issues and WMI
	The WMI Model
	Working with Event Log
	Working with Services
	Working with Processes
	Working with Environment Variables
	Working with the Registry
	Summary

	Chapter 9: WMI Provider for Configuration Management
	Managing SQL Server Services
	Managing Client Network Protocols
	Managing SQL Server Client Aliases
	Managing Server Network Protocols
	Changing FILESTREAM Settings
	Changing SQL Server Advanced Properties
	Summary

	Chapter 10: WMI Provider for Server Events
	WMI Provider for Server Events
	WMI Query Language (WQL)
	Event Handling with Windows PowerShell 2.0
	Monitoring Errors from the SQL Server Error Log
	Monitoring Deadlocks
	Monitoring Blockings
	Monitoring Login Changes and Failed Login Attempts
	Monitoring Databases
	Monitoring Database Objects
	Summary

	Chapter 11: Windows PowerShell in SQL Server 2008 Environment, SQL Server PowerShell Provider
	sqlps Utility
	SQLSERVER: Drive and Invoke-Sqlcmd cmdlet
	SQL Snap-ins
	Encoding and Decoding Uniform Resource Name (URN)
	Summary

	Chapter 12: Managing Policies through SQLSERVER:\SQLPolicy
	SQLSERVER:\SQLPolicy Folder
	Conditions
	Policies
	Summary

	Chapter 13: Windows PowerShell and SMO
	PowerShell and the SQLConnection .NET Class
	Working with SQL Server using SMO
	Working with Databases using SMO
	Working with Tables using SMO
	Backup and Restore with SMO
	Summary

	Chapter 14: Building SQL Server Standards and PowerShell Coding Standards
	SQL Server Standards
	SQL Server Development Standards
	Stored Procedure Standards
	Database Design Standards and Best Practices
	Data Protection Standards and Best Practices
	SQL Server Production Standards
	PowerShell Coding Standard
	Summary

	Chapter 15: Building SQL Server Inventory
	SQL Server Inventory
	Hosts
	Clusters
	ClusterNodes
	Servers
	Databases
	Supplementary Tables
	Summary

	Chapter 16: SQL Server Installation
	Installation Procedure and Template
	Standalone Installation Example
	Cluster Installation Example
	Summary

	Chapter 17: Collecting SQL Server Performance and Host Performance Data
	SQL Server Performance Data Collection
	SQL Server Host Performance Data Collection
	Summary

	Chapter 18: Monitoring SQL Server
	Pinging SQL Server Hosts
	Checking SQL Server–related Services on SQL Server Hosts
	Checking Uptime of SQL Server Hosts
	Monitoring Windows Event Logs
	Monitoring SQL Server Error Log
	Monitoring Blockings
	Monitoring Deadlocks
	Summary

	Chapter 19: Monitoring Disk Space Usage, Database Files, and Backups
	Monitoring Disk Space Usage
	Monitoring Database Files
	Monitoring Backups
	Summary

	Chapter 20: Defining Policies
	Stored Procedure Naming Convention Policy
	Auto_Close and Auto_Shrink Off Policy
	Summary

	Chapter 21: Generating Database Scripts
	Scripting Databases
	Scripting Schemas
	Scripting User-Defined Data Types
	Scripting Tables
	Scripting User Views
	Scripting Stored Procedures
	Scripting XML Schemas
	Scripting Users
	Summary

	Appendix A: cmdlets
	cmdlets Related to Core Snap-ins
	cmdlets Related to the PowerShell Management Snap-in
	cmdlets Related to the Security Snap-in
	cmdlets Related to the Utility Snap-in

	Index

